# **TWIST-3 GPDs in MODELS**



# Fatma Aslan & Matthias Burkardt

Towards improved hadron femtography with hard exclusive reactions

July 21, 2022

Models used to calculate twist-3 distributions:

- Quark target model (QTM)
- Scalar diquark model (SDM)



### Outline

Discontinuities in twist-3 GPDs

□ Singularities in twist-3 PDFs

### **GPDs**

$$\begin{split} F_{\lambda\lambda'}^{[\Gamma]}(P,x,\Delta,N) &= \int dk^- \, d^2 \vec{k}_T \, W_{\lambda\lambda'}^{[\Gamma]}(P,k,\Delta,N;\eta) \\ &= \frac{1}{2} \int \frac{dz^-}{2\pi} \, e^{ik\cdot z} \left\langle p',\lambda' \right| \bar{\psi}(-\frac{1}{2}z) \, \Gamma \, \mathcal{W}(-\frac{1}{2}z,\frac{1}{2}z \, | \, n) \, \psi(\frac{1}{2}z) \, | p,\lambda \rangle \, \Big|_{z^+ = \vec{z}_T = 0} \, . \end{split}$$

Identifying Twist  $\rightarrow$  Behavior under longitudinal momentum boost in the IMF



| Twist-2        | Twist-3          | Twist-4              |
|----------------|------------------|----------------------|
| Independent of | 1                | 1                    |
| P <sup>+</sup> | $\overline{P^+}$ | $\overline{(P^+)^2}$ |

*P*<sup>+</sup> (Longitudinal nucleon momentum)

### There are 8 twist-2, 16 twist-3 and 8 twist-4 GPDs

**GPDs in the DVCS amplitude** 

$$T^{\mu\nu} = -i \int d^4x e^{-iq \cdot x} \langle p' | T[J^{\mu}_{\text{e.m.}}(x) J^{\nu}_{\text{e.m.}}(0)] | p \rangle,$$

$$\gamma^*(q) + N(p) \rightarrow \gamma(q') + N(p'),$$



# **GPDs in the DVCS amplitude**

$$T^{\mu
u}=-i\int d^4x e^{-iq\cdot x}\langle p'|T[J^{\mu}_{ ext{e.m.}}(x)J^{
u}_{ ext{e.m.}}(0)]|p
angle,$$

$$\begin{split} T^{\mu\nu} &= \frac{1}{2} \int_{-1}^{1} dx \bigg[ \bigg( -g_{\perp}^{\mu\nu} - \frac{P^{\nu} \Delta_{\perp}^{\mu}}{P \cdot q'} \bigg) n^{\beta} F_{\beta}(x,\xi,\Delta) C^{+}(x,\xi) + \bigg( -g_{\perp}^{\nu\alpha} - \frac{P^{\nu} \Delta_{\perp}^{\alpha}}{P \cdot q'} \bigg) i \varepsilon_{\perp\alpha}^{\mu} n^{\beta} \tilde{F}_{\beta}(x,\xi,\Delta) C^{-}(x,\xi) \\ &- \frac{(q + 4\xi P)^{\mu}}{P \cdot q} \bigg( -g_{\perp}^{\nu\alpha} - \frac{P^{\nu} \Delta_{\perp}^{\alpha}}{P \cdot q'} \bigg) (F_{\alpha}(x,\xi,\Delta) C^{+}(x,\xi) - i \varepsilon_{\perp\alpha\beta} \tilde{F}^{\beta}(x,\xi,\Delta) C^{-}(x,\xi)) \bigg], \end{split}$$

$$\gamma^*(q) + N(p) \rightarrow \gamma(q') + N(p'),$$



# **GPDs in the DVCS amplitude**

$$T^{\mu\nu} = -i \int d^{4}x e^{-iqx} \langle p'|T[J_{e,m.}^{\mu}(x)J_{e,m.}^{\nu}(0)]|p\rangle, \qquad \gamma^{*}(q) + N(p) \rightarrow \gamma(q') + N(p'),$$

$$T^{\mu\nu} = \frac{1}{2} \int_{-1}^{1} dx \left[ \left( -g_{\perp}^{\mu\nu} - \frac{P^{\nu}\Delta_{\perp}^{\mu}}{P \cdot q'} \right) n^{\beta}F_{\beta}(x,\xi,\Delta)C^{+}(x,\xi) + \left( -g_{\perp}^{\nu\alpha} - \frac{P^{\nu}\Delta_{\perp}^{\alpha}}{P \cdot q'} \right) ie_{\perp a}^{\mu} n^{\beta}\tilde{F}_{\beta}(x,\xi,\Delta)C^{-}(x,\xi) - ie_{\perp a}\rho\tilde{F}^{\beta}(x,\xi,\Delta)C^{-}(x,\xi) \right], \qquad \gamma^{*}(q) + N(p) \rightarrow \gamma(q') + N(p'),$$

$$F^{\mu} = \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle p'|\bar{q}(\frac{\lambda}{2}n)\gamma^{\mu}\mathcal{W}(\frac{\lambda}{2}n, -\frac{\lambda}{2}n)q(-\frac{\lambda}{2}n)|p\rangle$$

$$= \frac{P^{\mu}}{P^{+}} \bar{u}(p') \left[ \gamma^{+}H + \frac{i}{2m}\sigma^{+\nu}\Delta_{\nu}E \right] u(p) + \bar{u}(p') \left[ \frac{\Delta_{\perp}^{\mu}}{2m}G_{1} + \gamma_{\perp}^{\mu}(H + E + G_{2}) + \Delta_{\perp}^{\mu}\frac{\gamma^{+}}{P^{+}}G_{3} + \tilde{\Delta}_{\perp}^{\mu}\frac{\gamma^{+}\gamma_{5}}{P^{+}}G_{4} \right] u(p)$$

$$\tilde{F}^{\mu} = \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle p' | \bar{q}(\frac{\lambda}{2}n) \gamma^{\mu} \gamma_{5} \mathcal{W}(\frac{\lambda}{2}n, -\frac{\lambda}{2}n) q(-\frac{\lambda}{2}n) | p \rangle$$

$$= \frac{P^{\mu}}{P^{+}} \bar{u}(p') \Big[ \gamma^{+} \gamma_{5} \tilde{H} + \frac{\Delta^{+}}{2m} \gamma_{5} \tilde{E} \Big] u(p) + \bar{u}(p') \Big[ \frac{\Delta^{\mu}_{\perp}}{2m} \gamma_{5} (\tilde{E} + \tilde{G}_{1}) + \gamma^{\mu}_{\perp} \gamma_{5} (\tilde{H} + \tilde{G}_{2}) + \Delta^{\mu}_{\perp} \frac{\gamma^{+} \gamma_{5}}{P^{+}} \tilde{G}_{3} + \tilde{\Delta}^{\mu}_{\perp} \frac{\gamma^{+}}{P^{+}} \tilde{G}_{4} \Big] u(p)$$
(5)

## **Twist-3 GPDs in the DVCS amplitude**

$$T^{\mu\nu} = -i \int d^{4}x e^{-iq \cdot x} \langle p' | T[J^{\mu}_{e.m.}(x) J^{\nu}_{e.m.}(0)] | p \rangle, \qquad \gamma^{*}(q) + N(p) \rightarrow \gamma(q') + N(p'),$$

$$T^{\mu\nu} = \frac{1}{2} \int_{-1}^{1} dx \left[ \left( -g^{\mu\nu}_{\perp} - \frac{P^{\nu} \Delta^{\mu}_{\perp}}{P \cdot q'} \right) n^{\beta} F_{\beta}(x, \xi, \Delta) C^{+}(x, \xi) + \left( -g^{\nu a}_{\perp} - \frac{P^{\nu} \Delta^{a}_{\perp}}{P \cdot q'} \right) i e^{\mu}_{\perp a} n^{\beta} \tilde{F}_{\beta}(x, \xi, \Delta) C^{-}(x, \xi) - \frac{\gamma^{*}}{\gamma^{*}} \int_{-1}^{\infty} \frac{d\lambda}{P \cdot q'} \left( -g^{\nu a}_{\perp} - \frac{P^{\nu} \Delta^{a}_{\perp}}{P \cdot q'} \right) (F_{a}(x, \xi, \Delta) C^{+}(x, \xi) - i \varepsilon_{\perp a\beta} \tilde{F}^{\beta}(x, \xi, \Delta) C^{-}(x, \xi)) \right], \qquad P$$

$$\begin{split} F^{\mu} &= \int_{-\infty} \frac{\partial \mathcal{A}}{2\pi} e^{-i\lambda x} \langle p' | \bar{q}(\frac{\partial}{2}n) \gamma^{\mu} \mathcal{W}(\frac{\partial}{2}n, -\frac{\partial}{2}n) q(-\frac{\partial}{2}n) | p \rangle \\ &= \frac{P^{\mu}}{P^{+}} \bar{u}(p') \Big[ \gamma^{+}H + \frac{i}{2m} \sigma^{+\nu} \Delta_{\nu} E \Big] u(p) + \bar{u}(p') \Big[ \frac{\Delta_{\perp}^{\mu}}{2m} G_{1} + \gamma_{\perp}^{\mu} (H + E + G_{2}) + \Delta_{\perp}^{\mu} \frac{\gamma^{+}}{P^{+}} G_{3} + \tilde{\Delta}_{\perp}^{\mu} \frac{\gamma^{+} \gamma_{5}}{P^{+}} G_{4} \Big] u(p) \end{split}$$

$$\tilde{F}^{\mu} = \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle p' | \bar{q}(\frac{\lambda}{2}n) \gamma^{\mu} \gamma_{5} \mathcal{W}(\frac{\lambda}{2}n, -\frac{\lambda}{2}n) q(-\frac{\lambda}{2}n) | p \rangle 
= \frac{P^{\mu}}{P^{+}} \bar{u}(p') \Big[ \gamma^{+} \gamma_{5} \tilde{H} + \frac{\Delta^{+}}{2m} \gamma_{5} \tilde{E} \Big] u(p) + \bar{u}(p') \Big[ \frac{\Delta^{\mu}_{\perp}}{2m} \gamma_{5} (\tilde{E} + \tilde{G}_{1}) + \gamma^{\mu}_{\perp} \gamma_{5} (\tilde{H} + \tilde{G}_{2}) + \Delta^{\mu}_{\perp} \frac{\gamma^{+} \gamma_{5}}{P^{+}} \tilde{G}_{3} + \tilde{\Delta}^{\mu}_{\perp} \frac{\gamma^{+}}{P^{+}} \tilde{G}_{4} \Big] u(p)$$
(5)

# **Twist-3 GPDs in the DVCS amplitude**

$$T^{\mu\nu} = -i \int d^{4}x e^{-iqx} \langle p'|T[J_{e,m}^{\mu}(x)J_{e,m}^{\nu}(0)]|p\rangle, \qquad \gamma^{*}(q) + N(p) \rightarrow \gamma(q') + N(p'),$$

$$T^{\mu\nu} = \frac{1}{2} \int_{-1}^{1} dx \left[ \left( -g_{\perp}^{\mu\nu} - \frac{P^{\nu}\Delta_{\perp}^{q}}{P \cdot q'} \right) n^{\beta} F_{\beta}(x,\xi,\Delta) C^{+}(x,\xi) + \left( -g_{\perp}^{\mu\sigma} - \frac{P^{\nu}\Delta_{\perp}^{q}}{P \cdot q'} \right) ie_{\perp a}^{\mu} n^{\beta} \tilde{F}_{\beta}(x,\xi,\Delta) C^{-}(x,\xi) - \frac{q}{2} + \frac{q}{2} +$$

## **Twist-3 GPDs in the DVCS amplitude**

$$T^{\mu\nu} = -i \int d^4 x e^{-iq \cdot x} \langle p' | T[J^{\mu}_{e.m.}(x) J^{\nu}_{e.m.}(0)] | p \rangle, \qquad \gamma^*(q) + N(p) \rightarrow \gamma(q') + N(p'),$$

$$T^{\mu\nu} = \frac{1}{2} \int_{-1}^{1} dx \Big[ \Big( -g^{\mu\nu}_{\perp} - \frac{p^{\mu}\Delta^{\eta}_{\perp}}{P \cdot q'} \Big) n^{\theta} F_{\beta}(x,\xi,\Delta) C^{+}(x,\xi) + \Big( -g^{\mu\sigma}_{\perp} - \frac{P^{\mu}\Delta^{\eta}_{\perp}}{P \cdot q'} \Big) i e^{\beta}_{\perp \alpha} n^{\theta} \tilde{F}_{\beta}(x,\xi,\Delta) C^{-}(x,\xi) \\ - \frac{(q+4\xi P)^{\mu}}{P \cdot q} \Big( -g^{\mu\sigma}_{\perp} - \frac{P^{\nu}\Delta^{\eta}_{\perp}}{P \cdot q'} \Big) (F_{a}(x,\xi,\Delta) C^{+}(x,\xi) - i e_{\perp a\beta} \tilde{F}^{\theta}(x,\xi,\Delta) C^{-}(x,\xi)) \Big], \qquad P \qquad P'$$

$$F^{\mu} = \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle p' | \bar{q}(\frac{\lambda}{2}n) \gamma^{\mu} \mathcal{W}(\frac{\lambda}{2}n, -\frac{\lambda}{2}n) q(-\frac{\lambda}{2}n) | p \rangle$$

$$= \frac{P^{\mu}}{P^{+}} \bar{u}(p') \Big[ \gamma^{+} H + \frac{i}{2m} \sigma^{+\nu} \Delta_{\nu} E \Big] u(p) + \bar{u}(p') \Big[ \frac{\Delta^{\mu}_{\perp}}{2m} G_{1} + \gamma^{\mu}_{\perp} (H + E + G_{2}) + \Delta^{\mu}_{\perp} \frac{\gamma^{+}}{P^{+}} G_{3} + \tilde{\Delta}^{\mu}_{\perp} \frac{\gamma^{+} \gamma_{5}}{P^{+}} G_{4} \Big] u(p)$$

$$\tilde{F}^{\mu} = \int_{-\infty}^{\infty} \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle p' | \bar{q}(\frac{\lambda}{2}n) \gamma^{\mu} \gamma_{5} \mathcal{W}(\frac{\lambda}{2}n, -\frac{\lambda}{2}n) q(-\frac{\lambda}{2}n) | p \rangle \Big[ L^{q}_{kin} = -\int dx x G_{2}^{q}(x, \xi = 0, t = 0) \Big]$$

$$= \frac{P^{\mu}}{P^{+}} \bar{u}(p') \Big[ \gamma^{+} \gamma_{5} \tilde{H} + \frac{\Delta^{+}}{2m} \gamma_{5} \tilde{E} \Big] u(p) + \bar{u}(p') \Big[ \frac{\Delta^{\mu}_{\perp}}{2m} P_{5} (E + G_{1}) + \gamma_{\perp} \gamma_{5} (E + G_{1}) + \gamma_{\perp} \gamma_{5} (E + G_{2}) + \Delta^{\mu}_{\perp} \frac{P^{+}}{P^{+}} G_{3} + \Delta^{\mu}_{\perp} \frac{P^{+} \gamma_{5}}{P^{+}} G_{4} \Big] u(p)$$

u(p)

### G<sub>2</sub> in Quark Target Model



 $\begin{array}{l} \Delta: \mbox{ The four-momentum transfer,} \\ P = p - \frac{\Delta}{2}(P' = p + \frac{\Delta}{2}): \mbox{ The incoming (outgoing) four-momentum,} \\ p: \mbox{ The average momentum (with } p_{\perp} = 0), \end{array}$ 

 $k - \frac{\Delta}{2}(k + \frac{\Delta}{2})$ : The four-momentum before (after) the interaction.

$$G_2 = \begin{cases} \frac{g^2}{2\pi^2} \frac{(1+x)}{(1-\xi^2)} \ln \Lambda_\perp & \text{for} \quad \xi < x < 1, \\ -\frac{g^2}{4\pi^2} \frac{(1+x)}{\xi(1+\xi)} \ln \Lambda_\perp & \text{for} \quad -\xi \le x \le \xi, \\ 0 & \text{for} \quad -1 < x < \xi, \end{cases}$$

 $x = \frac{n}{p^+}$ 





The parameterization

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixp^{+}z^{-}} \langle P', S' | \overline{q}(-\frac{z^{-}}{2})\gamma^{j}q(\frac{z^{-}}{2}) | P, S \rangle$$

$$= \frac{1}{2p^{+}} \overline{u}(P', S') \Big[ \frac{\Delta_{\perp}^{j}}{2M} G_{1} + \gamma^{j}(H + E + G_{2}) + \frac{\Delta_{\perp}^{j}}{p^{+}} \gamma^{+}G_{3} + \frac{i\epsilon_{T}^{jk}\Delta_{\perp}^{k}}{p^{+}} \gamma^{+}\gamma_{5}G_{4} \Big] \overline{u}(P, S),$$
for the second sec

Kiptily, Polyakov, Genuine twist-3 contributions to the generalized parton distributions from instantons (2003)

Quark target model in a symmetric frame

$$\text{The model } -\frac{ig^2}{2} \int \frac{d^4k}{(2\pi)^4} \delta(k^+ - xp^+) \overline{u}(P', S') \gamma^{\mu} \frac{(\not k + \frac{\lambda}{2} + m)}{[(k + \frac{\lambda}{2})^2 - m^2 + i\epsilon]} \gamma^{\perp} \frac{(\not k - \frac{\lambda}{2} + m)}{[(k - \frac{\lambda}{2})^2 - m^2 + i\epsilon]} \gamma^{\nu} \times \Big[g_{\mu\nu} - \frac{n_{\nu}(p_{\mu} - k_{\mu})}{p^+ - k^+} - \frac{n_{\mu}(p_{\nu} - k_{\nu})}{p^+ - k^+}\Big] \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{2} \sum_{i=1}^{n_{\mu}} \frac{1}{i} \sum_{j=1}^{n_{\mu}} \frac{1}{i} \sum_{j=1}^{i$$



The parameterization

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixp^{+}z^{-}} \langle P', S' | \overline{q}(-\frac{z^{-}}{2})\gamma^{j}q(\frac{z^{-}}{2}) | P, S \rangle$$

$$= \frac{1}{2p^{+}} \overline{u}(P', S') \Big[ \frac{\Delta_{\perp}^{j}}{2M} G_{1} + \gamma^{j}(H + E + G_{2}) + \frac{\Delta_{\perp}^{j}}{p^{+}} \gamma^{+}G_{3} + \frac{i\epsilon_{T}^{jk}\Delta_{\perp}^{k}}{p^{+}} \gamma^{+}\gamma_{5}G_{4} \Big] \overline{u}(P, S)$$

Kiptily, Polyakov, Genuine twist-3 contributions to the generalized parton distributions from instantons (2003)

Quark target model in a symmetric frame

$$\text{The model } -\frac{ig^2}{2} \int \frac{d^4k}{(2\pi)^4} \delta(k^+ - xp^+) \overline{u}(P', S') \gamma^{\mu} \frac{(\not{k} + \frac{\lambda}{2} + m)}{[(k + \frac{\lambda}{2})^2 - m^2 + i\epsilon]} \gamma^{\perp} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(k - \frac{\lambda}{2})^2 - m^2 + i\epsilon]} \gamma^{\nu} \times \Big[g_{\mu\nu} - \frac{n_{\nu}(p_{\mu} - k_{\mu})}{p^+ - k^+} - \frac{n_{\mu}(p_{\nu} - k_{\nu})}{p^+ - k^+}\Big] \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{1}$$

The divergent part of  $G_2$  is calculated as,  $-ig^2 \int \frac{d^2k_{\perp}dk^-}{(2\pi)^4} \frac{k^-8(p^+)^2(1+x)}{\left[(k+\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(k-\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(p-k)^2 - \lambda^2 + i\epsilon\right]}.$ 



The parameterization

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixp^{+}z^{-}} \langle P', S' | \overline{q}(-\frac{z^{-}}{2})\gamma^{j}q(\frac{z^{-}}{2}) | P, S \rangle$$

$$= \frac{1}{2p^{+}} \overline{u}(P', S') \Big[ \frac{\Delta_{\perp}^{j}}{2M} G_{1} + \gamma^{j}(H + E + G_{2}) + \frac{\Delta_{\perp}^{j}}{p^{+}} \gamma^{+}G_{3} + \frac{i\epsilon_{T}^{jk}\Delta_{\perp}^{k}}{p^{+}} \gamma^{+}\gamma_{5}G_{4} \Big] \overline{u}(P, S)$$

Kiptily, Polyakov, Genuine twist-3 contributions to the generalized parton distributions from instantons (2003)

Quark target model in a symmetric frame

$$\text{The model } -\frac{ig^2}{2} \int \frac{d^4k}{(2\pi)^4} \delta(k^+ - xp^+) \overline{u}(P', S') \gamma^{\mu} \frac{(\not k + \frac{\lambda}{2} + m)}{[(k + \frac{\lambda}{2})^2 - m^2 + i\epsilon]} \gamma^{\perp} \frac{(\not k - \frac{\lambda}{2} + m)}{[(k - \frac{\lambda}{2})^2 - m^2 + i\epsilon]} \gamma^{\nu} \times \Big[g_{\mu\nu} - \frac{n_{\nu}(p_{\mu} - k_{\mu})}{p^+ - k^+} - \frac{n_{\mu}(p_{\nu} - k_{\nu})}{p^+ - k^+}\Big] \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S)$$

The divergent part of 
$$G_2$$
 is calculated as,  $-ig^2 \int \frac{d^2k_{\perp}dk^-}{(2\pi)^4} \frac{k^-8(p^+)^2(1+x)}{\left[(k+\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(k-\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(p-k)^2 - \lambda^2 + i\epsilon\right]}.$ 

Using  $(P-k)^2 - \lambda^2 = 2(P^+ - k^+)(P^- - k^-) - k_{\perp}^2 - \lambda^2$ ,  $k^-$  in the numerator can be replaced by the following expression

$$k^{-} = \frac{M^{2}}{2p^{+}} - \frac{\left[(p-k)^{2} - \lambda^{2}\right]}{2(p^{+} - k^{+})} - \frac{\left(k_{\perp}^{2} + \lambda^{2}\right)}{2(p^{+} - k^{+})}$$



The parameterization

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixp^{+}z^{-}} \langle P', S' | \overline{q}(-\frac{z^{-}}{2})\gamma^{j}q(\frac{z^{-}}{2}) | P, S \rangle$$

$$= \frac{1}{2p^{+}} \overline{u}(P', S') \Big[ \frac{\Delta_{\perp}^{j}}{2M} G_{1} + \gamma^{j}(H + E + G_{2}) + \frac{\Delta_{\perp}^{j}}{p^{+}} \gamma^{+}G_{3} + \frac{i\epsilon_{T}^{jk}\Delta_{\perp}^{k}}{p^{+}} \gamma^{+}\gamma_{5}G_{4} \Big] \overline{u}(P, S).$$

$$\overset{\text{Rescaled}}{=} \frac{1}{2p^{+}} \overline{u}(P', S') \Big[ \frac{\Delta_{\perp}^{j}}{2M} G_{1} + \gamma^{j}(H + E + G_{2}) + \frac{\Delta_{\perp}^{j}}{p^{+}} \gamma^{+}G_{3} + \frac{i\epsilon_{T}^{jk}\Delta_{\perp}^{k}}{p^{+}} \gamma^{+}\gamma_{5}G_{4} \Big] \overline{u}(P, S).$$

Kiptily, Polyakov, Genuine twist-3 contributions to the generalized parton distributions from instantons (2003)

Quark target model in a symmetric frame

$$\text{The model } -\frac{ig^2}{2} \int \frac{d^4k}{(2\pi)^4} \delta(k^+ - xp^+) \overline{u}(P', S') \gamma^{\mu} \frac{(\not{k} + \frac{\lambda}{2} + m)}{[(k + \frac{\lambda}{2})^2 - m^2 + i\epsilon]} \gamma^{\perp} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(k - \frac{\lambda}{2})^2 - m^2 + i\epsilon]} \gamma^{\nu} \times \Big[g_{\mu\nu} - \frac{n_{\nu}(p_{\mu} - k_{\mu})}{p^+ - k^+} - \frac{n_{\mu}(p_{\nu} - k_{\nu})}{p^+ - k^+}\Big] \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{n_{\mu}(p_{\nu} - k_{\mu})}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(k - \frac{\lambda}{2})^2 - m^2 + i\epsilon]} \gamma^{\mu} \times \Big[g_{\mu\nu} - \frac{n_{\nu}(p_{\mu} - k_{\mu})}{p^+ - k^+} - \frac{n_{\mu}(p_{\nu} - k_{\nu})}{p^+ - k^+}\Big] \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S) + \frac{n_{\mu}(p_{\nu} - k_{\mu})}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(\not{k} - \frac{\lambda}{2} + m)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{\mu} \frac{(y - k)}{[(p - k)^2 - \lambda^2 + i\epsilon]} \nabla^{$$

The divergent part of 
$$G_2$$
 is calculated as,  $-ig^2 \int \frac{d^2 k_\perp dk^-}{(2\pi)^4} \frac{k^- 8(p^+)^2 (1+x)}{\left[(k+\frac{\Delta}{2})^2 - m^2 + i\epsilon\right] \left[(k-\frac{\Delta}{2})^2 - m^2 + i\epsilon\right] \left[(p-k)^2 - \lambda^2 + i\epsilon\right]}.$ 

Using  $(P-k)^2 - \lambda^2 = 2(P^+ - k^+)(P^- - k^-) - k_{\perp}^2 - \lambda_{\perp}^2 - k^-$  in the numerator can be replaced by the following expression

$$x^{-} = \frac{M^{2}}{2p^{+}} \left( \frac{[(p-k)^{2} - \lambda^{2}]}{2(p^{+} - k^{+})} - \frac{(k_{\perp}^{2} + \lambda^{2})}{2(p^{+} - k^{+})} \right)$$



The parameterization

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixp^{+}z^{-}} \langle P', S' | \overline{q}(-\frac{z^{-}}{2})\gamma^{j}q(\frac{z^{-}}{2}) | P, S \rangle$$

$$= \frac{1}{2p^{+}} \overline{u}(P', S') \Big[ \frac{\Delta_{\perp}^{j}}{2M} G_{1} + \gamma^{j}(H + E + G_{2}) + \frac{\Delta_{\perp}^{j}}{p^{+}} \gamma^{+}G_{3} + \frac{i\epsilon_{T}^{jk}\Delta_{\perp}^{k}}{p^{+}} \gamma^{+}\gamma_{5}G_{4} \Big] \overline{u}(P, S),$$
for the second sec

Kiptily, Polyakov, Genuine twist-3 contributions to the generalized parton distributions from instantons (2003)

Quark target model in a symmetric frame

$$\text{The model } -\frac{ig^2}{2} \int \frac{d^4k}{(2\pi)^4} \delta(k^+ - xp^+) \overline{u}(P', S') \gamma^{\mu} \frac{(\not k + \frac{\lambda}{2} + m)}{[(k + \frac{\lambda}{2})^2 - m^2 + i\epsilon]} \gamma^{\perp} \frac{(\not k - \frac{\lambda}{2} + m)}{[(k - \frac{\lambda}{2})^2 - m^2 + i\epsilon]} \gamma^{\nu} \times \Big[g_{\mu\nu} - \frac{n_{\nu}(p_{\mu} - k_{\mu})}{p^+ - k^+} - \frac{n_{\mu}(p_{\nu} - k_{\nu})}{p^+ - k^+}\Big] \frac{1}{[(p - k)^2 - \lambda^2 + i\epsilon]} u(P, S)$$

The divergent part of 
$$G_2$$
 is calculated as,  $-ig^2 \int \frac{d^2 k_\perp dk^-}{(2\pi)^4} \frac{k^- 8(p^+)^2 (1+x)}{\left[(k+\frac{\Delta}{2})^2 - m^2 + i\epsilon\right] \left[(k-\frac{\Delta}{2})^2 - m^2 + i\epsilon\right] \left[(p-k)^2 - \lambda^2 + i\epsilon\right]}.$ 

Using  $(P-k)^2 - \lambda^2 = 2(P^+ - k^+)(P^- - k^-) - k_\perp^2 - \lambda^2$ ,  $k^-$  in the numerator can be replaced by the following expression  $k^- = \frac{M^2}{2p^+} \left( \frac{[(p-k)^2 - \lambda^2]}{2(p^+ - k^+)} - \frac{(k_\perp^2 + \lambda^2)}{2(p^+ - k^+)} \right)$ 

The second term cancels the propagator in the denominator leading to the following contribution which is nonzero only in the ERBL region,  $-\xi < x < \xi$ .

$$ig^{2}4p^{+}\frac{(1+x)}{(1-x)}\int \frac{d^{2}k_{\perp}dk^{-}}{(2\pi)^{4}}\frac{1}{\left[(k+\frac{\Delta}{2})^{2}-m^{2}+i\epsilon\right]\left[(k-\frac{\Delta}{2})^{2}-m^{2}+i\epsilon\right]}.$$
15

# $\widetilde{G}_2$ in Quark Target Model



$$\begin{split} &\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixp^{+}z^{-}} \langle P', S' | \,\overline{q}(-\frac{z^{-}}{2}) \gamma^{j} \gamma_{5} q(\frac{z^{-}}{2}) | P, S \rangle \\ &= \frac{1}{2p^{+}} \overline{u}(P', S') \Big[ \frac{\Delta_{\perp}^{j}}{2M} \gamma_{5}(\widetilde{E} + \widetilde{G}_{1}) + \gamma^{j} \gamma_{5}(\widetilde{H} + \widetilde{G}_{2}) + \frac{\Delta_{\perp}^{j}}{p^{+}} \gamma^{+} \gamma_{5} \widetilde{G}_{3} + \frac{i\epsilon_{T}^{jk} \Delta_{\perp}^{k}}{p^{+}} \gamma^{+} \widetilde{G}_{4} \Big] \overline{u}(P, S). \end{split}$$

Quark target model in a symmetric frame



$$\widetilde{G}_{2} = \begin{cases} \frac{g^{2}}{2\pi^{2}} \frac{(x+\xi^{2})}{(1-\xi^{2})} \ln \Lambda_{\perp} & \text{for} \quad \xi < x < 1, \\ -\frac{g^{2}}{4\pi^{2}} \frac{(x+\xi^{2})}{\xi(1+\xi)} \ln \Lambda_{\perp} & \text{for} \quad -\xi \le x \le \xi, \\ 0 & \text{for} \quad -1 < x < \xi, \end{cases}$$



## **Discontinuities and Factorization**

# ✓: Continuous×: Discontinuous

| Twist-3 GPD (Vector) | Quark Target Model |
|----------------------|--------------------|
| $G_1$                | $\checkmark$       |
| $G_2$                | x                  |
| $G_3$                | х                  |
| $G_4$                | x                  |

| Twist-3 GPD (Axial V.) | Quark Target Model |
|------------------------|--------------------|
| $	ilde{G}_1$           | $\checkmark$       |
| $	ilde{G}_2$           | x                  |
| $	ilde{G}_3$           | x                  |
| $	ilde{G}_4$           | x                  |



Quark Target Model

Twist-3 GPDs have discontinuities !

$$\int_{-1}^{1} dx \, \frac{GPD}{x \pm \xi + i\varepsilon}$$

Discontinuities  $\rightarrow$  Divergent scattering amplitudes  $\rightarrow$  Factorization ?



### **DVCS Amplitude of the nucleon at twist -3 accuracy**

| Twist   | DVCS amplitude involves                                                                        |  |
|---------|------------------------------------------------------------------------------------------------|--|
| Twist-2 | $\int_{-1}^{1} dx \;\; rac{(	ext{Twist-2 GPDs})}{x\pm \xi+i\epsilon}$                         |  |
| Twist-3 | $\int_{-1}^{1} dx  \frac{\text{(Linear Combinations of Twist-3 GPDs)}}{x \pm \xi + i\epsilon}$ |  |

$$\int_{-1}^{1} dx \left[ \begin{pmatrix} F_{\perp}^{\nu} - i\varepsilon_{\perp\alpha}^{\nu} \widetilde{F}_{\perp}^{\alpha} \end{pmatrix} \frac{1}{x - \xi + i\varepsilon} + \begin{pmatrix} F_{\perp}^{\nu} + i\varepsilon_{\perp\alpha}^{\nu} \widetilde{F}_{\perp}^{\alpha} \end{pmatrix} \frac{1}{x + \xi - i\varepsilon} \right]$$
This linear combination of twist-3 GPDs This linear combination of twist-3 GPDs

Twist-3 generalized parton distributions in deeply-virtual Compton scattering - Fatma Aslan, Matthias Burkardt, Cedric Lorce, Andreas Metz, Barbara Pasquini (2018)

### **DVCS Amplitude of the nucleon at twist -3 accuracy**

| Twist   | DVCS amplitude involves                                                                        |  |  |
|---------|------------------------------------------------------------------------------------------------|--|--|
| Twist-2 | $\int_{-1}^{1} dx \;\; rac{(	ext{Twist-2 GPDs})}{x \pm \xi + i\epsilon}$                      |  |  |
| Twist-3 | $\int_{-1}^{1} dx  \frac{\text{(Linear Combinations of Twist-3 GPDs)}}{x \pm \xi + i\epsilon}$ |  |  |
| -       | . 1 . 1                                                                                        |  |  |



Twist-3 generalized parton distributions in deeply-virtual Compton scattering - Fatma Aslan, Matthias Burkardt, Cedric Lorce, Andreas Metz, Barbara Pasquini (2018)

**Example:** 

The relevant DVCS amplitude involves  $G_2 \pm \frac{G_2}{\xi}$ 



Twist-3 generalized parton distributions in deeply-virtual Compton scattering - Fatma Aslan, Matthias Burkardt, Cedric Lorce, Andreas Metz, Barbara Pasquini (2018)

#### Factorization is safe, but what about the discontinuities?



How do they behave? What do they represent? What happens in different models? What about the forward limit?

...



#### What happens in different models ?





### What happens in different models ?





### The forward limit: g<sub>2</sub> and g<sub>2</sub><sup>Quasi</sup> in SDM













g<sub>2</sub> (k<sup>+</sup>) and g<sub>2</sub><sup>Quasi</sup> (k<sup>z</sup>) in SDM



There is a momentum component in the nucleon state which does not scale as the nucleon is boosted to the infinite momentum frame.











## $g_2(x) \& g_2^{quasi}(x)$ in scalar di-quark model



There is a singularity at x=0

 $g_2(x) \& g_2^{quasi}(x)$  in scalar di-quark model



 $g_2(x) \& g_2^{quasi}(x)$  in scalar di-quark model













#### Singularities in twist-3 quark distributions

| Twist-2 PDF | SDM | QTM |
|-------------|-----|-----|
| $f_1(x)$    | ×   | ×   |
| $g_1(x)$    | ×   | ×   |
| $h_1(x)$    | ×   | ×   |

Twist-3 PDF SDM QTM

| e(x)     |              | $\checkmark$ |
|----------|--------------|--------------|
| $h_L(x)$ | $\checkmark$ | $\checkmark$ |
| $g_2(x)$ | $\checkmark$ | ×            |

# ✓ : There is a δ(x) × : There is no δ(x)

#### Aslan, Burkardt,

Singularities in Twist-3 Quark Distributions, 2018.

#### Burkardt, Koike,

Violation of sum rules for twist three parton distributions in QCD, 2001.



- At twist-3 there is something that does not exist in twist-2: There are delta functions.
- We identify these delta functions with momentum components in the nucleon state that do not scale as the nucleon is boosted to the infinite momentum.

**Decomposition of twist-3**  $h_L(x) = h_L^{WW}(x) + h_L^m(x) + h_L^3(x)$ 

 $\delta(x)$  term appears not only in  $h_L^m$  but also in  $h_L^3$ 

Burkardt & Koike, Violation of Sum Rules for Twist 3 Parton Distributions in QCD, 2001 45

| The effects | of different | regularization | schemes on | the $\delta(x)$ |
|-------------|--------------|----------------|------------|-----------------|
|-------------|--------------|----------------|------------|-----------------|

| $\delta(x)$ remains                                                                                                   | $\delta(x)$ is recovered     |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| Transverse momentum cut off<br>Dimensional regularization<br>Adding form factors<br>Adding axial diquark contribution | Pauli-Villars regularization |  |



#### The effects of different regularization schemes on the $\delta(x)$



#### The effects of different regularization schemes on the $\delta(x)$



#### The effects of different regularization schemes on the $\delta(x)$



#### The effects of different regularization schemes on the $\delta(x)$



The effects of different regularization schemes on the  $\delta(x)$ 



- -- What happens if twist-3 distributions involve a  $\delta(x)$  ?
- -- Some sum rules are violated if we don't take it into account.

Lorentz invariance of twist-3 GPDs  $\int_{-1}^{1} dx G_i(x,\xi,\Delta) = 0, \quad \int_{-1}^{1} dx \widetilde{G}_i(x,\xi,\Delta) = 0.$  $\lim_{\epsilon \to 0} \int_{-1}^{\epsilon} dx G_i(x,\xi=0,\Delta) + \lim_{\epsilon \to 0} \int_{-1}^{1} dx G_i(x,\xi=0,\Delta) \neq 0,$  $\lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} dx \widetilde{G}_i(x,\xi=0,\Delta) + \lim_{\epsilon \to 0} \int_{-1}^{1} dx \widetilde{G}_i(x,\xi=0,\Delta) \neq 0.$ In SDM the divergent part of  $G_2$  was calculated as  $G_2 = \begin{cases} -\frac{g^2}{4\pi^2} \frac{(1-x)}{(1-\xi^2)} \ln \Lambda_\perp & \text{for} \quad \xi < x \le 1, \\ -\frac{g^2}{16\pi^2} \frac{(2x+\xi-1)}{\xi(1+\xi)} \ln \Lambda_\perp & \text{for} \quad -\xi \le x \le \xi, \\ 0 & \text{for} \quad -1 < x < \xi. \end{cases}$  $\int_{-1}^{1} dx \ G_2 = -\frac{g^2}{16\pi^2} \int_{-\xi}^{\xi} dx \ \frac{(2x+\xi-1)}{\xi(1+\xi)} \ln \Lambda_{\perp} - \frac{g^2}{4\pi^2} \int_{\xi}^{1} dx \ \frac{(1-x)}{(1-\xi^2)} \ln \Lambda_{\perp} = 0$ The Lorentz invariance of  $G_2$  is satisfied  $\checkmark$ 



- -- What happens if twist-3 distributions involve a  $\delta(x)$  ?
- -- Some sum rules are violated if we don't take it into account.

Lorentz invariance of twist-3 GPDs  $\int_{-1}^{1} dx G_i(x,\xi,\Delta) = 0, \quad \int_{-1}^{1} dx \widetilde{G}_i(x,\xi,\Delta) = 0.$ 

$$\int_{-1}^{1} dx g_1(x) = \int_{-1}^{1} dx g_T(x)$$

$$\int_{-1}^{1} dx h_1(x) = \int_{-1}^{1} dx h_L(x)$$

$$\int_{-1}^{1} dx e(x) = \frac{1}{2M} \langle p | \overline{\psi}(0) \psi(0) | p \rangle = \frac{d}{dm} M$$

If one tries to confirm these sum rules experimentally by drawing conclusions from the behavior <u>near x=0</u> about the behavior <u>at x=0</u> they might claim that the sum rules are violated.

The origin of  $\delta(x)$ 

$$g_{T}(x) = ig^{2} \int \frac{d^{4}k}{(2\pi)^{4}} \delta(k^{+} - xP^{+}) \frac{(x + \frac{m}{M})(2k^{-}P^{+} + mM)}{(k^{2} - m^{2} + i\epsilon^{2})[(p - k)^{2} - \lambda^{2} + i\epsilon]} = \frac{M^{2}}{2p^{+}} - \frac{(p - k)^{2} - \lambda^{2}}{2(p^{+} - k^{+})} - \frac{(k_{\perp}^{2} + \lambda^{2})}{2(p^{+} - k^{+})} = \frac{M^{2}}{2(p^{+} - k^{+$$

for all 
$$k^+ \int dk^+ dk^- \frac{1}{(k^2 - m^2 + i\epsilon)^2} = \int dk^+ dk^- \frac{1}{(2k^+k^- - k_\perp^2 - m^2 + i\epsilon)^2}$$
  
=  $\int d^2k_L \frac{1}{(k_L^2 - k_\perp^2 - m^2 + i\epsilon)^2} = \frac{i\pi}{k_\perp^2 + m^2}$ 

1.5

The origin of  $\delta(x)$ 



The origin of  $\delta(x)$ 



#### **ZERO MODES and THE VACUUM**

In LF framework zero modes are responsible for vacuum condensates.





Matthias Burkardt, Light Front Quantization, 1995

### **CUT and UNCUT DIAGRAMS**



-- There is no difference between the two approaches at twist-2 level. Both methods are equivalent and yields identical PDFs. They also agree for 0<x<1,

#### so how can one method result in a violation of LIR and other does not?

--The answer is in the appearance of  $\delta(x)$  term when using the uncut diagrams which is not present in the cut diagrams.

# Conclusions



QTM k K  $\langle n n n \rangle$ Р Р

#### □ Twist-3 GPDs have discontinuities

| Twist-3 GPD (Vector) | Quark Target Model |
|----------------------|--------------------|
| $G_1$                | $\checkmark$       |
| $G_2$                | x                  |
| $G_3$                | x                  |
| $G_4$                | x                  |



| Twist-3 GPD (Axial V.) | Quark Target Model |
|------------------------|--------------------|
| $	ilde{G}_1$           | $\checkmark$       |
| $	ilde{G}_2$           | х                  |
| $	ilde{G}_3$           | х                  |
| $	ilde{G}_4$           | х                  |



# Conclusions



Twist-3 GPDs have discontinuities.

| Twist-3 GPD (Vector) | Quark Target Model | Twist-3 GPD (Axial V.) | Quark Target Model |
|----------------------|--------------------|------------------------|--------------------|
|                      | <u> </u>           |                        |                    |
| G <sub>1</sub>       | ✓                  | <u> </u>               | V                  |
| $G_2$                | x                  | $\tilde{G}_2$          | х                  |
| $G_3$                | х                  | $	ilde{G}_3$           | x                  |
| $G_4$                | х                  | $	ilde{G}_4$           | x                  |



QTM

 $\sim$ 

ĸ



**□** Twist-3 PDFs contain a  $\delta(x)$ .

| Twist-3 PDF | SDM          | QTM          |
|-------------|--------------|--------------|
| e(x)        | $\checkmark$ | $\checkmark$ |
| $h_L(x)$    | $\checkmark$ | $\checkmark$ |
| $g_2(x)$    | $\checkmark$ | ×            |



 $\Box$  The sum rules for twist-3 distributions are violated if we do not take the  $\delta(x)$  into account

 $\Box$   $\delta(x)$  is related to the zero modes in the LF framework.

□ Zero modes are generated by twist-3 evolution





# Conclusions



Twist-3 GPDs have discontinuities.

| Twist-3 GPD (Vector) | Quark Target Model | Twist-3 GPD (Axial V.) | Quark Target |
|----------------------|--------------------|------------------------|--------------|
| $\overline{G_1}$     | $\checkmark$       | $	ilde{G}_1$           | $\checkmark$ |
| $G_2$                | X                  | $	ilde{G}_2$           | x            |
| $G_3$                | x                  | $	ilde{G}_3$           | x            |
| $G_4$                | х                  | $	ilde{G}_4$           | x            |
| $G_3$ $G_4$          | x<br>x             | $G_3$                  | x<br>x       |



QTM

 $\sim$ 

ĸ

Model



**Twist-3 PDFs contain a \delta(x).** 

| Twist-3 PDF | SDM          | QTM          |
|-------------|--------------|--------------|
| e(x)        | $\checkmark$ | $\checkmark$ |
| $h_L(x)$    | $\checkmark$ | $\checkmark$ |
| $g_2(x)$    | $\checkmark$ | ×            |

P<sup>z</sup>(P<sup>+</sup>)=25 \_\_\_\_g\_2^{(x)} 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 -1 -0.5 0 0.5 1 1.5

 $\Box$  The sum rules for Twist-3 distributions are violated if we do not take the  $\delta(x)$  into account

- $\Box$   $\delta(x)$  is related to the zero modes in the LF framework.
- □ Zero modes are generated by twist-3 evolution

THANK YOU



Twist -3 evolution