Physics at the new $\pi 20$ beamline in J-PARC

Natsuki TOMIDA Kyoto University, Japan

2022/Jul/21

Towards improved hadron femtography with hard exclusive reactions

J-PARC

Japan Proton Accelerator Research Complex

Hadron hall

high momentum (high-p) beamline

- 2020 first beam
- Derive primary proton beam (30 GeV)
- 10¹⁰ proton/spill (5.2 s)
- Study of Φ meson mass modification in nuclei (E16)
 - $p + A \rightarrow \Phi + X$
 - Φ→e⁺e⁻

$\pi 20$ beamline

- Derive secondary beam $(\pi/K/p_{bar})$ to the high-p beamline
- Place a target at the branching point
- Install polarity change devices, focusing magnets in the high-p beamline (positive proton beam → negative secondary beam)

$\pi 20$ beamline

- High intensity : $\pi^2 > 10^7$ Hz
- High momentum resolution : $\Delta p/p \sim 0.1\%$ (RMS)
- Unseparated beam : $\pi/K/pbar$ identification by beam PID detectors

Design Intensity [/spill (5.2 sec)]

Hadron hall extension

current hadron hall

Extension

- Selected as the 1st priority project of KEK in 2022-2027
- $\pi 20$ beamline construction together with the extension

Physics programs at $\pi 20$ beamline

- Hadron structure
 - Exclusive Drell-Yan (GPDs) (LoI)
 - Charmed baryon spectroscopy (E50)
 - E baryon spectroscopy (LoI)
 - High isospin dibaryon search (E79)
- Ap scattering cross section (LoI)
- Φ production (Proposal submitted)

Carry out experiments with a common setup : multi-purpose spectrometer

Spectrometer

- Streaming DAQ : no hardware trigger R. Honda et al., PTEP 123H01 (2021)
- High rate stability : 1MHz/1 mm @ center
- Large acceptance High momentum resolution

Suited for exclusive measurements

Tracking detectors

Fiber Trackers

- High rate : 1 MHz/mm
- Fiber scintillators

Beam Fiber Tracker (0.5 mm Φ)

Scattered Fiber Tracker (1.0 mm Φ)

x6: Ready

Drift Chamber (DC)

Large acceptance

Inner DC

Target Downstream DC

x4 : ready x1 : start construction in 2022 x1 : planned

TOF detectors

Τ0

- Cherenkov + MPPC
- Suppression of dark currents using shot key barrier diode
- σ_T ~ 30 ps
 MPPCs

MPPCs Ready

PID detectors

Ring Imaging Cherenkov detector (RICH)

• MPPC + light guide cone

Prototype test in 2022

Electronics

ASAGI

- Amp-Shaper-Discriminator Card for DCs
- Testing a prototype board

CIRASAME

- Multi MPPC readout card for Fiber Trackers and Cherenkov counters
- Testing a prototype board

AMANEQ

- The main electronics board for the trigger less data acquisition system
 - Mezzanine card
 - HR-TDC
 - LR-TDC
 - Clock distribution
- Ready

Charmed baryon spectroscopy

- Study of the effective degree of freedom of hadrons in low energy QCD
- Probe di-quark correlation

First missing mass spectroscopy of charmed baryons

- Probe di-quark correlation from the ratio of the production cross section / branching fraction of excited states
- ⇔ Collider experiments (LHCb, belle) (Invariant mass measurement)

Charmed baryon spectroscopy

Theoretical studies

S.H. Kim et al, Phys.Rev . D92 (2015) 094021S.H. Kim et al, PTEP 10 (2014) 103D01S.I Shim, et al, PTEP 2020, (2020) 5, 053D01

Ξ (s=-2) baryon spectroscopy

I=3 dibaryon search

- Dibaryon : 2 baryons ?, 6 quarks ?
- D_{IJ} : Dibaryon with I=isospin, J=spin

H. Clement Prog. Part. Nucle. Phys. 93 (2017) 195

- m_{D30} ~ m_{D03} => baryon molecular
- m_{D30} >> m_{D03} => 6 quarks

Λp scattering

- Λ(uds)-p scattering cross section : basic information to understand baryon-baryon interaction including hyperons
- Short life time of Λ : τ = 2.6 \times 10⁻¹² s, $c\tau$ = 7.9 cm
- No differential cross section measurement up to now

Φ production

- Φ(ss̄) : weak interaction with nucleons
 => No nucleon resonances coupled to ΦN?
- A bump observed in $\gamma p \rightarrow \Phi p$ reaction <= t-channel dominant

• The early stage experiment at the $\pi 20$ beamline with low intensity π^{-}

Summary

- High momentum secondary beamline is planned at J-PARC 20 GeV/c $\pi/K/pbar \pi 20$ beamline
- Detectors for multi-purpose spectrometer is under construction
 - High momentum resolution
 - Large acceptance
 - High rate capability

Suited for precise exclusive measurements

- Variety of physics programs are expected
 - Exclusive Drell-Yan (GPDs)
 - Charmed baryon spectroscopy
 - E baryon spectroscopy
 - High isospin dibaryon search
 - Ap scattering cross section
 - Φ production

Proposals/LoIs : https://jparc.jp/researcher/Hadron/en/ Proposal_e.html

Thank you for your attention !