"Towards improved hadron femtography with hard exclusive reactions", Virginia Tech, Jul 18 – 22, 2022

Exclusive Drell-Yan Process for GPDs at J-PARC E50

Wen-Chen Chang Institute of Physics, Academia Sinica

Outline

- Exclusive Drell-Yan Process: measuring GPDs in a *time-like* approach
- Proposal:
 - High-momentum beamline at J-PARC
 - Feasibility study [PRD93 (2016) 114034]
 - Status and prospects
- Summary

Multi-dimensional Partonic Structures

Electromagnetic Form Factors

Multi-dimensional Partonic Structures

Wigner Distributions

Factorization of Hard Processes

Parton Density Function (PDF) MMHT 2014

L. A. Harland-Lang, A. D. Martin, P. Motylinski, R.S. Thorne, arXiv:1412.3989

Multi-dimensional Partonic Structures

Leading-Twist Transverse-momentum Dependent **Parton Density Function** (TMDs)

 A nonzero Sivers function is considered to be strong evidence for the presence of quark orbital angular momentum.

Nonzero Sivers Asymmetries from SIDIS

COMPASS, PLB 744 (2015) 250

[arXiv:1204.1239]

d quark

-0.5

0.5

k_x(GeV)

0.5

ky(GeV)

-0.5

S

0.5

k_x(GeV)

0.5

ky(GeV)

-0.5

-0.5

Non-Universality of Sivers Function

J.C. Collins, Phys. Lett. B 536 (2002) 43 A.V. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B 656 (2003) 165 D. Boer, P.J. Mulders, F. Pijlman, Nucl. Phys. B 667 (2003) 201 Z.B. Kang, J.W. Qiu, Phys. Rev. Lett. 103 (2009) 172001

• QCD gluon gauge link (Wilson line) in the initial state (DY) vs. final state interactions (SIDIS).

• Fundamental predictions from TMD physics will be tested.

Sivers Asymmetry in Drell-Yan: Hint of Sign Change!

Multi-dimensional Partonic Structures

Wigner Distributions

Generalized Parton Distributions

Muller et al., PRD 86 031502(R) (2012)

Deeply Virtual Compton Scattering

Ji, PRL 78, 610 (1997); Radyushkin, PLB 380, 417 (1996)

Deeply Virtual Meson Production

Time-like Compton Scattering

Generalized Parton Distributions

Muller et al., PRD 86 031502(R) (2012)

$\pi N \rightarrow l^+ l^- N$ (handbag diagram)

E.R. Berger, M. Diehl, B. Pire, PLB 523 (2001) 265

$$\begin{split} \left. \frac{d\sigma_L}{dt dQ'^2} \right|_{\tau} &= \frac{4\pi \alpha_{\rm em}^2}{27} \frac{\tau^2}{Q'^8} f_{\pi}^2 \left[(1-\xi^2) |\tilde{\mathcal{H}}^{du}(\tilde{x},\xi,t)|^2 \\ &- 2\xi^2 \mathrm{Re} \left(\tilde{\mathcal{H}}^{du}(\tilde{x},\xi,t)^* \tilde{\mathcal{E}}^{du}(\tilde{x},\xi,t) \right) - \xi^2 \frac{t}{4m_N^2} |\tilde{\mathcal{E}}^{du}(\tilde{x},\xi,t)|^2 \right], \end{split}$$

Differential Cross Sections of $\pi N \rightarrow l^+ l^- N$

Beyond the Leading Twist

S.V. Goloskokov, P. Kroll, PLB 748 (2015) 323

 $d\sigma$

Transversity GPDs: H_T , \overline{E}_T

Pion Timelike FFs

u-channel (Backward) —Transition Distribution Amplitude (TDA)

$\pi^- + (p, A) \rightarrow \gamma^*, J/\psi + n \text{ at large } |t|$

Progress and Opportunities in Backward angle (u-channel) Physics https://arxiv.org/abs/2107.06748

Exclusive Drell-Yan Measurement

- Factorization: $Q^2 \gg 1 \ GeV^2$
- Cross sections:
 - Cross sections decrease rapidly with an increase of Q^2 . $Q^2 < 9 GeV^2$
 - \sqrt{s} should be small enough to keep $\sqrt{\tau} = \frac{Q}{\sqrt{s}} = \sqrt{x_{\pi}x_{N}}$ large enough. Take $Q = 2 \text{ GeV}, \sqrt{\tau} = \sqrt{0.5 * 0.3} = 0.39, \sqrt{s} = 5 \text{ GeV}$, pion beam momentum should be less than 15 GeV.
- Exclusivity: missing-mass technique
 - Good resolution for missing mass
 - Open aperture without the hadron absorber before measuring the momentum of lepton tracks
 - Reasonably low track multiplicity

The high-momentum beam line at J-PARC with 10-20 GeV π^- beam ($\sqrt{s} = 4 - 6$ GeV) is most appropriate!

Exclusive Diphoton Process

J. Qiu's Talk

PREPARED FOR SUBMISSION TO JHEP

JLAB-THY-22-3617, MSUHEP-22-018

https://arxiv.org/abs/2205.07846

Exclusive production of a pair of high transverse momentum photons in pion-nucleon collisions for extracting generalized parton distributions

Jian-Wei Qiu^{*a,b*} Zhite Yu^{*c*}

^a Theory Center, Jefferson Lab, Newport News, Virginia 23606, USA

^bDepartment of Physics, William & Mary, Williamsburg, Virginia 23187, USA

^cDepartment of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

E-mail: jqiu@jlab.org, yuzhite@msu.edu

ABSTRACT: We show that exclusive production of a pair of high transverse momentum photons in pion-nucleon collisions can be systematically studied in QCD factorization approach if the photon's transverse momentum q_T with respect to the colliding pion is much

Exclusive Diphoton Process

figure 2: Exclusive massive photon-pair (a) and lepton-pair (b) production in pion-nucleon collision, and (c) the photon-pair productions when $|t| \equiv |(p - p')^2| \to 0$.

Exclusive Diphoton Process

25

J-PARC

Experimental Areas

Hadron Exp.

Facility

50 Gel/ o

Linac

3

Synchrotron

Neutrino Beams

(to Kamioka)

Bird's eye photo in January of 2008

J-PARC High-momentum Beam Line

Search for μ to e conversion

Branch from the high-momentum BL

Annex building is being built at the

8 GeV, 50 kW protons

south side.

- Unseparated secondary particles (pi, ...)
 - High-resolution secondary beam by adding several quadrupole and sextupole magnets.

J-PARC High-momentum Beam Line (Hi-P BL)

- High-intensity secondary pion beam
- High-resolution beam: $\Delta p/p \sim 0.1\%$

J-PARC High-momentum Beam Line (Hi-P BL)

- High-intensity secondary pion beam
- High-resolution beam: $\Delta p/p \sim 0.1\%$

* Sanford-Wang: 15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m

K. Shirotori, J-PARC workshop

Extension of J-PARC E50 Experiment for Drell-Yan measurement

$\pi^- N \rightarrow l^+ l^- X$ Missing-mass M_X

 π^- Beam Momentum

- Data Taking: 50 days
- 1.5 < M_{μ+μ} < 2.9 GeV
- $|t t_0| < 0.5 \, \text{GeV}^2$
- "GK2013" GPDs

The exclusive Drell-Yan events could be identified by the signature peak at the nucleon mass in the missing-mass spectrum for all three pion beam momenta.

Expected Statistical Sensitivity

- Data Taking: 50 days
- 1.5 < *M*_{µ+µ-} < 2.9 GeV
- $|t t_0| < 0.5 \, \text{GeV}^2$

The statistics sensitivity is good enough for discriminating the predictions from two current GPD models.

Kinematic regions of GPDs explored by space-like and time-like processes

JLAB, HERMES, COMPASS → Space-like approach
J-PARC (KEKB) → Time-like approach

"GPD" and "Transition GPD"

"Transition GPD": L. L. Frankfurt et al., PRD 60, 014010 (1999)

- $\pi^- p \rightarrow \gamma^* n$
- $\pi^- p \rightarrow \gamma^* \Delta^0$
- $\pi^- n \rightarrow \gamma^* \Delta^-$
- $\pi^+ n \rightarrow \gamma^* p$
- $\pi^+ p \rightarrow \gamma^* \Delta^{++}$
- $\pi^+ n \rightarrow \gamma^* \Delta^+$

- $K^- p \rightarrow \gamma^* \Lambda$ R. Trotta's Talk
- $K^- p \rightarrow \gamma^* \Lambda(1405)$
- $K^- p \rightarrow \gamma^* \Lambda(1520)$
- $K^-n \rightarrow \gamma^* \Sigma^-$
- $K^+n \rightarrow \gamma^* \Theta^+$ J-PRAC Hadron Hall Extension

Timeline

- Beamline:
 - High-P beamline: 2020 (30-GeV proton beam)
 - Secondary meson beams: 2025 (expected)
- Studies of nucleon structures in E50:
 - Letter of intent: summited in December, 2018
 - Proposal: plan to submit by 2022
 - Commission: 2025 (expected)

Proposal to complete...

• The μ -ID system:

- Tracker RPCs: rejection of muons from the decay-in-flight pions and kaons.
- Material of hadron absorber: concrete and steel
- Updating the GPD modeling.
- Simulate the expected signalto-background and yields of exclusive DY events.
- Optimize the design of μ -ID system and dimuon trigger.

Natsuki Tomida (Kyoto University), Takahiro Sawada (Osaka Metropolitan University), Chia-Yu Hsieh, Po-Ju Lin, Wen-Chen Chang (Academia Sinica)

Summary

- Hadron structures are explored by both space-like and time-like approaches: FFs, PDFs, TMDs and GPDs.
- Planned measurements of exclusive πinduced Drell-Yan process in E50 is a novel approach of measuring GPDs and will bring important understandings on:
 - (Universality of) nucleon GPDs
 - DA and timelike FFs of pions
 - Color-transparency (with nuclei targets)
 - TDA ...