New results on exclusive J/ψ photoproduction near threshold with GlueX Lubomir Pentchev $\gamma p \rightarrow J/\psi p \rightarrow e^+ e^- p$

- New preliminary results: total and differential cross section in the full near threshold kinematic region - based on full GlueX Phase-I dataset
 - **GlueX** detector
 - Data analysis: J/ψ identification, normalization
 - Total cross section (from threshold E_{γ} =8.2-11.44 GeV)
 - Differential cross sections: three E_{γ} slices, each $t_{min}(E_{\gamma}) t_{max}(E_{\gamma})$
- Interpretation of the results
 - Phenomenology forward cross section at threshold $(t \rightarrow 0, E_{\gamma} \rightarrow E_{thr.})$
 - Gluon exchange: asymptotic, VMD, GPD factorization models
 - Open-charm exchange
 - Discussion: relevance to the gluon properties of the proton
- Outlook

(GlueX Collaboration)

Hall D Apparatus

- Photon beam from coherent Bremsstrahlung off thin diamond
- Photon energy tagged by scattered electron: 0.2% resolution
- Beam collimated at 75m, <35 μrad
- Intensity: ~ 2 10⁷ 5 10⁷ γ/sec above J/ψ threshold (8.2 GeV) – total ~320 pb⁻¹ in GlueX phase-I runs

GlueX detector

2T-solenoid, LH target Tracking (FDC,CDC), Calorimetry (BCAL,FCAL), Timing (TOF,SC)

- Hermetic detector: $1 120^{\circ}$ polar and full azimuthal acceptance
- Tracking: $\sigma_p/p \sim 1-5~\%$
- Calorimetry: $\sigma_{\!E}/E\sim 6\,\%\,/\sqrt{E}+2\,\%$

Exclusive reaction
$$\gamma p \rightarrow J/\psi p \rightarrow e^+e^-p$$

 GlueX detector has full acceptance for this reaction - direct measurement of the total cross section - no need to extrapolate to low/high t

 Electrons separated from pions by E/p – energy deposition in the calorimeters over measured momentum (pions >10³ times more than electrons)

e+e- invariant mass spectrum

- Tagged photon beam (0.2% energy resolution) and exclusivity of the reaction:
- Kinematic fit (constrained mostly by the recoil proton): 13 MeV mass resolution; no radiative tail
- J/ ψ yields extracted from fits of $M(e^+e^-)$ distributions
- BH(1.2 2.5 GeV) used for normalization

Preliminary results: total cross-section

- Yields (N $_{\rm J/\psi}$ and N $_{\rm BH}$) extracted from fits of $M(e^+e^-)$ and p/E $\,$ in bins of energy
- σ_{BH} calculated using analytical and numerical calculation of e.m. tree level diagrams
- Systematic errors of individual data points assigned to max deviation when varying fitting methods
- Errors dominated by statistics
- ~20% overall normalization error

Preliminary results: total cross-section

- Yields (N $_{\rm J/\psi}$ and N $_{\rm BH})$ extracted from fits of $M(e^+e^-)$ and p/E $\,$ in bins of energy
- σ_{BH} calculated using analytical and numerical calculation of e.m. tree level diagrams
- Systematic errors of individual data points assigned to max deviation when varying fitting methods
- Errors dominated by statistics
- ~20% overall normalization error
- No "dip" seen in BH and also in the $\gamma p \rightarrow (p\bar{p})p$ reaction, where $M(p\bar{p})$ fixed at J/ψ mass
- Statistical significance of the two "dip" points 2.6σ ; if include look-elsewhere effect 1.3σ

$$\sigma_{J/\psi}(E_{\gamma}) = \frac{N_{J/\psi}(E_{\gamma})}{N_{BH}(E_{\gamma})} \frac{\sigma_{BH}(E_{\gamma})}{\mathcal{B}_{J/\psi}} \frac{\varepsilon_{BH}(E_{\gamma})}{\varepsilon_{J/\psi}(E_{\gamma})}$$

- Event-by-event weighting by luminosity
- Dots mean energy and t-value for the corresponding bin
- Results reported at mean energy for corresponding slice
- Deviations due to bin averaging included in the systematic errors

E_{γ}, GeV	8.93	9.86	10.82
$q_{c.m.},GeV~$ (J/ ψ p c.m.)	0.499	0.767	0.978
$d\sigma/dt(0), nb/GeV^2$	3.121 ± 2.23	2.303 ± 0.400	4.184 ± 0.541
m_s, GeV	1.089 ± 0.172	1.453 ± 0.074	1.314 ± 0.049

Forward differential cross-sections - threshold extrapolation

Forward differential cross-sections - model dependent applications

 $|\,\alpha_{J/\psi p}\,| =$

 $\frac{d\sigma}{(0)}$

 $\gamma_{\psi}^2 k_{\gamma p}^2$

using VMD

1/ $J/\psi - p$ scattering length: $13.4 \pm 3.8 \ mfm, \ 17.9 \pm 1.7 \ mfm$ very weak $J/\psi - p$ interaction

3/ Relation to GFFs - QCD: *Guo, Ji, Liu PRD103 (2021)*; holographic: *Mamo, Zahed PRD104 (2021), Hatta, Rajan, Yang PRD100 (2019)*

$$r_{s} = 6 \frac{dA(t)}{dt} \bigg|_{t=0} - 18 \frac{C(0)}{m_{p}^{2}} \qquad r_{m} = 6 \frac{dA(t)}{dt} \bigg|_{t=0} - 6 \frac{C(0)}{m_{p}^{2}}$$

4/ Anomalous contribution to proton mass: M_a/M_N from $d\sigma/dt(0)$, e.g. following: Wang, Chen, Evelin EPJ C80 (2020), based on Kharzeev Proc.ISPF (1996)

Total cross section asymptotic - power counting

2g exchange alone not enough to describe x-section near threshold

QCD factorization models

Ivanov, Schafer, Szymanowski, Krasnikov EPJ C34 (2004) Ivanov, Szymanowski, Wagner - private communication Factorization LO, NLO at high energies and low t

QCD models underestimate x-section significantly

Jones, Martin, Ryskin, Teubner, EPJC 76 (2016) Flett, Jones, Martin, Ryskin, Teubner, arXiv:1908.08398 (Aug 2019)

QCD factorization models

Guo, Ji, Liu PRD103 (2021)

In heavy-quark mass limit - factorization valid near threshold (resp. for high *t*)

- GPD + lattice results for $A_g(t)$ and $C_g(t)$
- Fit to published GlueX data (2019)

QCD models underestimate x-section significantly

FIG. 3. Feynman diagram for the proposed CC mechanism. The dashed blue line pinpoints the open-charm intermediate state.

Open-charm or gluon exchange dominates?

Experimental observations	open-charm exchange	gluon exchange
possible structures in total cross	cusp-like structures at $\bar{D}^{(*)}\Lambda_c$	no structures X
section	thresholds 🗸	
$d\sigma/dt$ enhancement at high t	u-channel - charm baryon exchange 🗸	possible ?
sharp t-slope	expect shallow t-dependance due to	consistent with gluon FFs as predicted
	high mass exchange X	on lattice 🗸
$d\sigma/dt$ - weak energy dependence	?	expected from power counting rules?
especially at high t (approx.)		\checkmark
helicity conservation	?	?
Naturality	?	2g - natural parity exchange

Conclusions

- New GlueX data more questions than answers:
- Proximity of the reported total/differential cross sections to threshold in the full kinematic space allows (more reliable) extrapolation to t = 0 and $E_{thr.}$ and gives access to very important physics gluon properties of the proton however
 - ... assuming VMD, QCD factorization
 - ... assuming relation of the measured cross sections and the gluon FFs
 - assuming gluon exchange over open-charm exchange mechanism:
- Total cross section in agreement with open-charm exchange, while QCD predictions underestimate the data
- Differential cross section generally consistent with gluon exchange and predicted by lattice QCD
- More precise measurements near threshold (including polarization quantities) are needed to better understand the reaction mechanism - expect x4 more data from Phase-II
- Important input from theorists is expected

Back-ups

QCD: high-t asymptotic

Sun, Tong, Yuan PRD105 (2022) Asymptotic t-dependance $1/t^5$ (vs $1/t^4$) due to helicity flip

Not enough statistics to test the *t*asymptotic However we can check J/psi helicity conservation/flip, naturality?

e/π separation

Pion contamination ~50% in the continuum (using p/E fits to estimate it)

BH e.m. calculations vs data

BH yields extracted from fits of E/p distributions

$\gamma p \rightarrow (p \bar{p}) p$ with $M(p \bar{p}) \sim M_{J/\psi}$

Preliminary results: differential cross-sections

- Results reported at mean energy for corresponding slice
- Deviations due to bin averaging included in the systematic errors using data-driven model

Differential cross sections - QCD factorization

Guo, Ji, Liu PRD103 (2021)