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2 Pion distr ibution amplitudes

Pion DAs captures the overlap of the pion with a state of two collinear valence quark 
carrying momentum fraction  and .x (1 − x)

They are nonperturbative 
fundamental input to the 
collinear factorization for 
exclusive QCD processes:

• Pion-photon 
transition form factor

• Electromagnetic 
form factor

• Gravitational form factors
• GPDs
• … γ*π+ → π+



3 Pion distr ibution amplitudes

Process independent 
non-perturbative DAs

Process dependent 
hard kernel from 
perturbation theory

Fπ(Q2) = 𝒩∫
1

0 ∫
1

0
dxdy ϕ*(v, μ2

F)

× TV
F (u, v, Q2, μ2

R, μ2
F)ϕ(u, μ2

F)+𝒪(
1

Q2
)

Through QCD factorization, infrared divergences in radiative corrections to a 
process are absorbed into DAs, and the remnant is calculable at the parton level 
in perturbation theory at large momentum transfer.

γ*π+ → π+• Electromagnetic 
form factor



4 Pion distr ibution amplitudes
Pion-photon transition form factor

ϕ(x, μ → ∞) = 6x(1 − x)

Pion electromagnetic form factor

• Current pQCD prediction 
using asymptotic DA is 
challenged by existing data • How different is  from its asymptotic 

form when ? And how much does 
it contribute to the form factor?

ϕ(x, μ)
μ2 ∼ Q2

Belle Collaboration, PRD 2012

L. Chang, et 
al, PRL2013

E. Ydrefors, et 
al, PLB2021



5 Pion distr ibution amplitudes

The twist-2 pion DA is defined by the Fourier 
transform of the light-front correlation:

ϕ(x, μ) = ∫
dλ
2π

e−ixλI(λ, μ), with λ = P+z−

ifπP+I(λ, μ) = ⟨0 |d(−z−/2)γ+γ5W+u(z−/2) |π+; P⟩

with

Though lattice QCD is a non-perturbative technique, 
the unequal time separation is a sign problem for 
Euclidean lattice.

A. V. Radyushkin, 1977

G. P. Lepage and S. J. Brodsky, PLB 1979

G. P. Lepage and S. J. Brodsky, PRD 1980
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Lattice computation of DA：

Equal-t ime matrix elements

iPzh(z, Pz)
= ⟨0 |d(−z3/2)γzγ5Wz3

u(z3/2) |π+; P⟩

RQCD,  PLB2017

RQCD,  JHEP2019

V.  Braun and D.  Müller, EPJC 2008

A. J. Chambers, et al, PRL 2017

HOPE Collaboration, PRD2022

quasi-DA matrix elements

• Mellin or Gegenbauer Moments from 
leading-twist local operators.

• Short distance expansion of current-
current matrix elements.

• Large-momentum effective theory: 
-space matching of quasi-DA.

• Leading-twist expansion of the quasi-DA 
matrix elements in position space or the 
pseudo-DA approach.

• …

x

A. V. Radyushkin, PRD 2017

A. V. Radyushkin, Int.J.Mod.Phys.A 2020

X. Ji, PRL 2013

X. Ji, et al, RevModPhys 2021

LPC, arXiv: 2201.09173
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Quasi-DA：

Large-momentum effective theory

quasi-DA matrix elements

ϕ̃(x, Pz, μ) = ∫
dz
2π

e−ixzPzhR(z, Pz, μ)

iPzh(z, Pz)
= ⟨0 |d(−z3/2)γzγ5Wz3

u(z3/2) |π+; P⟩

ϕ̃(x, Pz, μ) = ∫
dy
|y |

C(x, y, Pz, μ)ϕ(y, μ)

+𝒪(
Λ2

QCD

(1 − x)2P2
z

,
Λ2

QCD

x2P2
z

)

-space factorization (matching)：x

• Predicting the  dependence of DA (also 
for PDFs, GPDs and so on) with controlled 
systematics.

x

X. Ji, et al, RevModPhys 2021

LPC, arXiv: 2201.09173

X. Gao, et al, PRL 2022

perturbative	kernel

Light-cone	DA

See	Yong	Zhao’s	talk	for	more	details.



8

OPE in terms of Mellin moments

Leading-twist expansion

hR(z, Pz, μ)

= ∑
n=0

(−iλ/2)n

n!

n

∑
m=0

Cn,m(z2μ2)⟨xm⟩(μ)+𝒪(z2Λ2
QCD)

• Under an ERBL evolution in ,  the 
different Mellin moments mix, which is 
also reflected in the non-vanishing 
off-diagonal nature of .

μ

Cn,m(μ2z2)

Wilson coefficients
A. V. Radyushkin, PRD 2019

Y. S. Liu, et al, PRD 2019

Mellin moments 
λ = zPz

quasi-DA matrix elements

iPzh(z, Pz)
= ⟨0 |d(−z3/2)γzγ5Wz3

u(z3/2) |π+; P⟩



9 Leading-twist expansion

• The twist-2 expansion is limited in 
small  due to the power correction.


• Similar to the polynomial function, 
larger  is needed to get 
access to higher moments.


•  of pion are pure real due to iso-
spin symmetry, in other words, the 
odd Mellin moments of pion DA is 0.

z

λ = zPz

hR

Large momentum  is the key!Pz

• Under an ERBL evolution in ,  the 
different Mellin moments mix, which is 
also reflected in the non-vanishing 
off-diagonal nature of .

μ

Cn,m(μ2z2)

OPE in terms of Mellin moments

Wilson coefficientshR(z, Pz, μ)

= ∑
n=0

(−iλ/2)n

n!

n

∑
m=0

Cn,m(z2μ2)⟨xm⟩(μ)+𝒪(z2Λ2
QCD)

λ = zPz
Mellin moments 

A. V. Radyushkin, PRD 2019

Y. S. Liu, et al, PRD 2019



10 Leading-twist expansion

The conformal OPE

hR(z, Pz, μ)

= ∑
n=0

an(μ)ℱn(λ/2,z2μ2; αs) + 𝒪(z2Λ2
QCD)

with Gegenbauer moments:

V.  Braun and D.  Müller, EPJC 2008

an(μ) =
4(n + 3/2)

3(n + 1)(n + 2) ∫
1

0
dx ϕ(x, μ)C3/2

n (2x − 1)

At LL accuracy, QCD is conformal, 
 evolves multiplicatively with the 

anomalous dimension 
an(μ)

γ(0)
n

• Under an ERBL evolution in ,  the 
different Mellin moments mix, which is 
also reflected in the non-vanishing 
off-diagonal nature of .

μ

Cn,m(μ2z2)

OPE in terms of Mellin moments

hR(z, Pz, μ)

= ∑
n=0

(−iλ/2)n

n!

n

∑
m=0

Cn,m(z2μ2)⟨xm⟩(μ)+𝒪(z2Λ2
QCD)

λ = zPz

Wilson coefficients
A. V. Radyushkin, PRD 2019

Y. S. Liu, et al, PRD 2019

Mellin moments 



11 Lattice calculation

Lattice setup:

➡ Clover-fermion on 2+1f HISQ gauge ensembles

➡ , a = 0.076 fm,  MeV

➡ 8 momentum from 0 to 1.78 GeV using boosted 

smearing

➡1-HYP smearing for Wilson line

➡ 350 configurations  100 inversion sources

643 × 64 mπ = 140

×

⟨ ⟩

⟩⟨

z

R(ts) =

⟨d(−z3/2)γzγ5Wz3
u(z3/2)π†

S (P)⟩

⟨πS(P)π†
S (P)⟩

R(ts)
ts→∞

PzhB(z, Pz)/Z0

Z0 = ⟨π; Pz |π†(Pz) |0⟩
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a = 0.076 fm

Bare quasi-DA matrix elements

R(ts)
ts→∞

PzhB(z, Pz)/Z0

hB(z, Pz)

fπ = 130.0(4) MeV

hB(z = 0, Pz) = fπ /ZA

A good cross check



13 Ratio-scheme renormalization

• Hadron state independent.

• Construct the RG-invariant ratio.

• Impose the normalization condition at z = 0.

M(λ, z2, Pz, P0
z ) ≡ (

hB(z, Pz)
hB(z, P0

z ) ) (
hB(0,P0

z )
hB(0,Pz) )

= (
hR(z, Pz)
hR(z, P0

z ) ) (
hR(0,P0

z )
hR(0,Pz) )

The operator can be multiplicatively 
renormalized

htw2(z, Pz, μ) = ∑
n=0

(−iλ/2)n

n!

n

∑
m=0

Cn,m(z2μ2)⟨xm⟩(μ)

ÕΓ(z, μ) = Zψ,zeδm|z|ÕΓ(z, ϵ)

λ = zPz

• Insert the twist-2 OPE formula.



14 Moments from leading-twist approximation
 extracted from fixed ⟨x2⟩ z

• The tree-level ( ) result is approximately 
plateaued, showing the effect of  evolution to 
be mild at  GeV.

•  can be determined at small  from both 
Mellin-OPE and Conformal-OPE, and remains to 
be  independent within the errors in long range.

•  from M-OPE is about 3% higher than that 
from C-OPE, could be due to the remnant finite 

 corrections that are missing from C-OPE.

αs = 0
z

μ = 2

⟨x2⟩ z

z

⟨x2⟩

𝒪(αs)

λ = zPz

z [fm]

hR(z, Pz, μ)∑
n=0

(−iλ/2)n

n!

n

∑
m=0

Cn,m(z2μ2)⟨xm⟩(μ)+𝒪(z2Λ2
QCD)



15 Moments from leading-twist approximation
 extracted from fixed ⟨x2⟩ z

z [fm]

Combine  fit to stabilize the fit usingz

• We vary  (2  and 3 ) and  
(0.4 fm to 0.7 fm) to estimate the 
systematic errors.

zmin a a zmax

hR(z, Pz, μ)∑
n=0

(−iλ/2)n

n!

n

∑
m=0

Cn,m(z2μ2)⟨xm⟩(μ)+𝒪(z2Λ2
QCD)

λ = zPz



16 Moments from leading-twist expansion

RQCD 19: local twist-2 operator.

LPC 22: -space LaMET matching of quasi-
DA using Hybrid renormalization.

x
JHEP 08 (2019) 065, JHEP 11 (2020)

arXiv:2201.09173

• Our results are consistent with one 
from -space LaMET matching of 
quasi-DA approach within the errors.

• About 2.4-  larger from the estimate 
using the local operator approach.

• Need to investigate the remaining 
systematical uncertainties such as the 
effect of finite lattice spacing, and will 
do the -space LaMET matching using 
hybrid renormalization.

x

σ

x



17 Pion DA from model determination

ϕ(x) = 𝒩xα(1 − x)α
NG+1

∑
n=0

snC1/2+α
2n (1 − 2x)

We inserted a generalized parametrization 
for the DA into the OPE formula

• Shown systematic errors come from the 
variation of , .


• Basically equivalent to model the higher 
moments by the lower moments that data is 
sensitive to.


• Overall flat DA can be observed over a 
range of  with sharp fall offs, 

 and  with . 

z NG

u ∈ [0.2,0.8]
uα (1 − u)α α ≈ 0.3

X. Gao, Y. Zhao, et al, arXiv: 2206.04084



18 Form factors from pion DA

Fπ(Q2) = 𝒩∫
1

0 ∫
1

0
dxdy ϕ*(v, μ2

F)

× TV
F (u, v, Q2, μ2

R, μ2
F)ϕ(u, μ2

F) + 𝒪(
1

Q2
)

Electromagnetic form factor

B. Melic, et al, PRD 1999 

• We take the one-loop kernels and evolve 
our model fit result from the initial scale 

 = 2 GeV to .


• We choose  as the central 
value of the scale, and vary the 
renormalization scale  by a factor of 2 
to estimate the perturbation uncertainty.

μ0 μF

μ2
R = μ2

F = Q2

μR



19 Form factors from pion DA
• Our prediction using the LO kernel 

is systematically lower than the DSE 
and BSE calculations but higher 
than the asymptotic DA. 

• The scale uncertainty is big when 
 is not large enough. NLO and 

higher-twist DA correction may 
make a significant contribution. 

• Form factors at larger  are 
needed to clarify the issue, either 
from experiment such as Jlab (up to 
6 ) and EIC (up to 40 ) or 
direct lattice calculation (up to ~ 10 

 will be available soon).

Q2

Q2

GeV2 GeV2

GeV2
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⟨P′ |Tμν
g (μR) |P⟩ = 2P̄μP̄νAπ

g(t, μR)

+
1
2

(ΔμΔν − gμνΔ2)Cπ
g(t, μR) + 2m2gμνCπ

g(t, μR)

Form factors from pion DA

Gravitational form factors:

Aπ
g(t, μR) = 𝒩∫ ϕ*(v, μF)

× 𝒜π
g(u, v, t, μR, μF)ϕ(u, μF) ,

Using the same factorization convention

X. B. Tong, J. P. Ma and F. Yuan, PLB 2021

X. B. Tong, J. P. Ma and F. Yuan, arXiv: 2203.13493

D. A. Pefkou, et al, PRD2022

• Similar to EMFF, the pQCD contribution to 
pion GFFs   using twist-2 DA is low.Aπ

g(t)



Summary	and	outlook
✓ We presented a lattice QCD study of the quasi-DA matrix element in real-

space using the leading-twist OPE method for the first time.


✓ We extracted the moments model independently and present the 
-dependence of the pion DA based on fits to Ansatze.


✓ From the Ansatze-based pion DA, we calculate the pQCD contribution to 
the form factors with large  using the leading-twist LO convolutions.


➡ We plan to extend the current work to study the Kaon DA and quantify the 
effects of explicit SU(3) flavor symmetry breaking.


➡ We are computing pion and kaon electromagnetic form factors with large 
 up to 10 .

x

Q2

Q2 GeV2
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Thanks	for	your	attention


