

ALICE Results on UPCs and peripheral collisions

Alexander Bylinkin

On behalf of the ALICE Collaboration

Towards improved hadron femtography with hard exclusive reactions, 21st July 2022, Virginia Tech, VA, USA

Outline

- Motivation
- ALICE Detector
- Photo-nuclear reactions in UPC and non-UPC PbPb
- Vector meson and two-photon interactions in pPb UPCs
- XeXe UPCs
- Summary

Photon induced processes in heavy ion collisions

 Ultrarelativistic moving nuclei produce strong electromagnetic (EM) fields that can be treated as a **quasi-real photons flux**

Probes of nuclei in UPC

- UPCs at LHC: the most energetic photon-nuclei interactions
- Low-x physics and search for the nonlinear parton dynamics (saturation regime)

Nuclear structure

• Nuclear shadowing effects on gluon PDFs at low x

$$R_g^A(x,Q^2) = \frac{g_A(x,Q^2)}{Ag_p(x,Q^2)} < 1$$

• Onset of saturation is expected to depend on the atomic mass number

Saturation may contribute to nuclear shadowing!

Photoproduction in UPCs

- Many photoproduction processes can be studied in ALICE \rightarrow Vector meson production
- Bjorken-*x* evolution of the parton distribution Xe

• Centre-of-mass energy of the photon-target system

$$\longrightarrow W^2_{\gamma p, Xe, Pb} = 2E_{p, Xe, Pb}M_{VM}e^{\mp y}$$

• Transverse-plane distribution of the partons

• 2D Fourier transform to the |t| (~ p_T^2) dependence in coherent interaction

ALICE (A Large Ion Collider Experiment)

ALICE Detector: J/ψ at mid-rapidity

ALICE Detector: J/ψ at forward rapidity

ALICE Detector: exclusivity condition

10

Pb-Pb UPC Results

Coherent J/ ψ photoproduction rapidity dependence

• Nuclear suppression factor: for $x \in (0.3, 1.4) \cdot 10^{-3}$

$$S_{Pb} = \sqrt{\left(\frac{d\sigma}{dy}\right)_{data}} / \left(\frac{d\sigma}{dy}\right)_{IA} = 0.65 \pm 0.03$$

- Models with shadowing (*EPS09*, *L*eading *T*wist *A*pproximation) 8
 and saturation (*G*lauber-*G*ribov *H*ot *S*pot):
 - Describe only central and most forward data
- Other models describe either the central or the forward rapidity region

No model describes the full rapidity dependence

Coherent ψ ' photoproduction

• Nuclear suppression factor: for $x \in (0.3, 1.6) \cdot 10^{-3}$

 $S_{\rm Pb} = 0.66 \pm 0.06$

 \rightarrow Consistent with the J/ ψ result

- Models with shadowing:
 - EPS09 agrees
 - LTA agrees
- Models with saturation:
 - Balitsky-Kovchegov (b-BK) agrees
 - GG-HS overpredicts
- Other models overpredict the results

Coherent J/ ψ photoproduction |t|-dependence

- From p_T^2 -dependent photoproduction to |t|-dependent photonuclear production:
 - *p*_T² to |*t*| transition with two different unfolding methods (Deconvolution of the photon p_T contribution from the photonuclear |t|)
 - Correction on interference of photon sources
 - From UPC to photonuclear cross section using the photon flux

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{J/\psi}}^{\mathrm{coh}}}{\mathrm{d}y \mathrm{d}p_{\mathrm{T}}^2} \bigg|_{\mathrm{y=0}} = 2n_{\mathrm{\gamma Pb}}(y=0)\frac{\mathrm{d}\sigma_{\mathrm{\gamma Pb}}}{\mathrm{d}|t|}$$

Probing the transverse partonic structure of the nucleus at low x!

Coherent J/ ψ photoproduction |t|-dependence

• Difference from STARlight (driven by the nuclear form factor) in shape and magnitude

- Models based on pQCD describe data within current uncertainties:
 - Nuclear shadowing (LTA)
 - Gluon saturation (b-BK)
- Future measurements should allow to distinguish between the predictions

Pb-Pb Non-UPC Results

What happens when going from ultra-peripheral to peripheral collisions?

p-Pb UPC Results

Exclusive J/ ψ cross-section: energy dependence

- In pPb UPCs the photon flux from the Pb-nucleus dominates
 - \rightarrow access to γp interactions
- Power law fit to ALICE data
 - Exponent: $\delta = 0.70 \pm 0.04$
- No change between HERA and LHC
- ALICE and LHCb are compatible
- Agreement with models:
 - **JMRT NLO**: DGLAP formalism with main NLO contributions
 - **CCT**: Saturation in an energy dependent hot spot model

Dissociative J/ ψ cross-section: energy dependence

- First measurement of the dissociative cross section (with the proton break up) at the LHC!
 - Agreement with **CCT**, predicts maximum at $W_{\gamma p} \approx 500 \text{ GeV}$
 - Agreement with HERA results

Energies $\approx 1 \text{ TeV}$ available in Run 3!

$\gamma \gamma \rightarrow \mu \mu$ cross section

- $\gamma \gamma \rightarrow \mu \mu$ cross section in the low mass region!
- **STARlight**:
 - LO QED without final-state radiation or other NLO effects
 - No interactions within the radius of the targets
 - Slight excess in data agreement within 3 sigma
- Can be used to improve current models
 - Fix background for VM or jet photoproduction
 - Improve predictions for light-by-light scattering

Xe-Xe UPC Results

Coherent ρ^0 photoproduction: A-dependence

- Measurement with Pb and Xe collisions
- Power-law fit: $\alpha = 0.96 \pm 0.02$

 - Value close to incoherent is a coincidence caused by large shadowing effect
 - Black-disc limit distant at $W_{\gamma A} = 65 \text{ GeV}$

- Models **agree** with the data:
 - GKZ shadowing
 - CCKT saturation

Study of the A dependence!

Outlook: Run 3 & 4

- \mathcal{L} increase 1 nb⁻¹ (Run 2) \rightarrow 13 nb⁻¹ (Runs 3+4)
- Continuous readout → higher data collection efficiency
- Significant detector upgrades
- Proposed **O-O run** → new system size

- New differential measurements:
 - $\frac{\mathrm{d}^2\sigma}{\mathrm{d}y\mathrm{d}|t|}$
 - Angular dependences between l^+l^-
 - Coherent ρ^0 evolution with A in O-O ...

20

- Completely new measurements:
 - $\Upsilon(1S)$ Q^2 factor 10 larger than J/ψ
 - Interference effects
 - Incoherent ρ^0 production ...

Meson, channel	$\sigma^{ t Pb-Pb}$	N ^{Tot}	Ν ^{η < 0.9}	Ν ^{-4 < η < -2.5}
$\rho^0 \rightarrow \pi^+ \pi^-$	5.2 b	$68 imes 10^9$	$5.5 imes 10^9$	-
$\rho' \rightarrow \pi^+ \pi^- \pi^+ \pi^-$	730 mb	$9.5 imes10^9$	$210 imes 10^6$	-
$\phi \to K^{\scriptscriptstyle +}K^{\scriptscriptstyle -}$	0.22 b	$2.9 imes10^9$	$82 imes 10^6$	-
$J/\psi \rightarrow \mu^+ \mu^-$	1.0 mb	$14 imes 10^6$	$1.1 imes 10^6$	600×10^{3}
$\psi(2S) \rightarrow \mu^+ \mu^-$	30 µb	400×10^{3}	$35 imes 10^3$	19×10^3
$\Upsilon(1S) \rightarrow \mu^+ \mu^-$	2.0 μb	$26 imes 10^3$	$2.8 imes 10^3$	880

Summary

- PbPb UPCs
 - Models with shadowing or saturation describe vector meson cross sections in the central and most forward regions within uncertainties
 - |t|-dependence sensitive to parton distribution in the transverse plane
- PbPb non-UPCs
 - Excess of low-p_T vector mesons observed for the non-central collisions is consistent with the coherent photoproduction (scenario with the modified photonuclear cross section)
- pPb UPCs
 - Exclusive cross section agrees with previous results from HERA and LHCb
 - Proton dissociative cross sections measured for the first time at LHC
 - Low mass $\gamma\gamma \rightarrow \mu\mu$ measurement can be used to improve uncertainties on photon fluxes and higher-order effects such as Coulomb and unitarity corrections
- XeXe UPCs
 - A dependence is consistent with shadowing and saturation models

Thank you very much for your attention!