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Abstract

It is well known that 45◦ is the optimal angle to send a projectile to achieve the maximal range,

R (on flat ground). Yet, the best shot putters release at angles about 10% lower instead. The

resolution to this “puzzle” was traced to the landing site being lower than the height of release.

Instead of solving this optimization problem using standard calculus, we revisit alternatives relying

on no calculus but only geometry. We highlight the fact that, in the optimal trajectory, the initial

and final velocities are always orthogonal and the optimal angle follows easily from this condition

and energy conservation. Novel perspectives include (a) the notion of “duality” between the launch

and landing and (b) the envelope of all trajectories launched from one point (say the origin of a

coordinate system) with the same speed. Consequences associated with these ideas are explored.

1



I. INTRODUCTION

Although the control of projectile motion had been undoubtedly a major concern of hu-

mans for millions of years, quantitative analysis of the problem started just a few centuries

ago. The simple version of it – motion under the influence of uniform gravitational accel-

eration g – is present in all elementary physics texts. Discussed by many publications, the

problem of optimizing the effort has been posed in a large variety of situations. A standard

one is: Given the initial speed (s, “muzzle velocity”), what angle (α, relative to the hori-

zontal) should the projectile be launched for it to reach a maximum distance (“range” ρ).

Of course, if the landing site is at the same height (elevation) as the launch site, it’s well

known that αopt = 45◦, a result that Galileo found[1]. For the case where the landing site

is lower than the launch height, a number of papers were published from 1977 [2–8]. The

title of this paper follows that in several of these[3, 5, 7], as the problem of finding αopt is

often cast in the light of a “puzzle”: Why do the best shot putters (those who achieve the

maximal range) release their shot with an average[9] of 37◦ rather than 45◦? The resolution

for αopt < 45◦ turned out to be the shot hitting the ground below the height of release,

though the issue for the athlete is more complex, involving both physiology and physics. As

a concrete example in physics, Lichentenberg and Wills [3] arrived at αopt ≃ 42.3◦ based on

a drop of 2.1m and ρ = 22m (and thus, associated with a minimal s). For the same reason,

to optimize a basketball shot[10] (for which the landing site is above the launch site), we

find αopt > 45◦. Thus, we are motivated to consider the less widely known case of projectile

motion, in which the heights of the launch and landing sites differ by a general value, δ. As

an optimization problem, the standard route is to find a relationship between {s, δ, α, ρ},

set the derivative dρ/dα to zero (with fixed {s, δ}, say) and solve for αopt. Typically this

approach involves multiple steps and laborious algebra.[3] A much simpler way requires no

calculus; only the concepts of vectors and the cross product,[5] or indeed, only geometry.[7]

In this paper, we revisit the basketball/shot-put problem and present a comprehensive

version of the purely geometric solution. With minimal algebra (not even a quadratic equa-

tion) and trigonometry (no further than the definition of cotangent of an angle), our so-

lution requires no more than middle school mathematics. As for knowledge in physics,

this approach requires only the simplest consequences of F⃗ = ma⃗ (constant g) and energy

conservation.

2



First, we relate this problem to an amusing “brain teaser” in geometry. In addition, we

end by bringing together different perspectives in several different fields of physics/geometry.

In particular, we believe the notion of “duality,” as introduced into this problem, is novel.

Further, we believe it is valuable for the student to see that subtle connections between

different branches of physics exist (geometric optics and projectile motion here; quantum

and statistical mechanics elsewhere). The remainder of this article is organized as follows.

We begin with a mathematical “appetizer,” which will shed light on the problem at hand.

The next section sets up the physics behind the shot put question and provides a variety of

results. A following section is devoted to two novel perspectives of this venerable problem.

We end with some concluding remarks.

II. A SIMPLE “BRAIN TEASER” IN GEOMETRY

If a rectangle is inscribed in a quarter-circle (gray, in Fig. 1a), what aspect ratio will

maximize its area? The answer is intuitively clear and easy to show, namely, 1 : 1. If we

now extend this question to a rectangle inscribed in two quarter circles with different radii

in two adjacent quadrants (gray, in Fig. 1b), what aspect ratio is required? To be specific,

let us denote the radii by L1,2, and the heights and widths of the two parts of the rectangle

by H1,2 and W1,2 respectively, as shown in Fig. 1b. By construction, we require

H1 = H2 ≡ H, (1)

and so, the question is: Given the L values, what are the ratios H/Wi which maximize the

total area A ≡ H (W2 +W2)?

The standard approach is to substitute Wi =
√

L2
i −H2 into A, set dA/dH = 0, and

solve for H. But, can a solution be found without using calculus. We show that, indeed,

this optimization problem can be solved with geometry alone.

We can rephrase the question to: What angle (γ) between the diagonals (dashed lines)

in Fig. 1b maximizes A? Fig. 2 shows a sequence of (self explanatory) moves of triangles

demonstrating that the area of the original rectangle in Fig. 2a is the same as the one in

Fig. 2e. Meanwhile, the heavy dashed lines in the former are congruent with those in the

latter. In particular, the top edge of the last rectangle touches the end of the slanted dashed

line, by construction. Thus, it is clear that the area is maximal when the angle between the
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dashed lines are orthogonal. The attentive reader will notice that this is merely a geometric

way to show that the area of the rectangle in Fig 1a is just L1L2 sin γ, which is of course

maximal when γ = 90◦. Also clear is that this result is just the vector product relation

L⃗1 × L⃗2 =
∣∣∣L⃗1

∣∣∣ ∣∣∣L⃗2

∣∣∣ sin γ, which is also the area of the parallelogram spanned by L1 and L2.

Indeed, this is the basis behind the solution in an early publication[5].

FIG. 1: (a) Rectangle inscribed in a quarter circle. What aspect ratio maximizes the area? (b)

Rectangle inscribed in two quarter circles with different radii. What aspect ratio maximizes the

area in this case?

So, the conclusion of this brief “brain teaser” is that the area in Fig 1b is maximal when

γ = 90◦. Moreover, it is straightforward to note that this property implies that the three

rectangles (H1 ×W1, W2 ×H2, and L1 × L2) are all similar. Thus, we have

H1

W1

=
W2

H2

=
L2

L1

. (2)

III. PHYSICS OF PROJECTILE MOTION ON A FLAT EARTH

Since the projectile motion is restricted to a vertical plane, we will denote the horizontal

and vertical coordinates by (x, y). For convenience, let the projectile be launched from the

origin (0, 0), with velocity v⃗ = (vx, vy) and speed s = |v⃗|, subjected to a uniform gravitational

force, so that its acceleration is the constant (0,−g). One significant length associated with

this problem is

hmax ≡ s2/2g, (3)

which is the height beyond which this projectile can never reach. Meanwhile, 2hmax is the

maximum range when the project is to land “on flat ground” (at the same height as the
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FIG. 2: Sequence of moves demonstrating that the area of the original rectangle (a) is the same as

(e).

launch site).

The evolution in time (t) is standard:

x (t) = vxt; y (t) = vyt−
g

2
t2. (4)

Eliminating t, we get the equation for the trajectory

y (x) =
vy
vx

x− g

2v2x
x2 (y(x))

which is the familiar (downward pointing) parabola). While the coefficient of x is clearly

unitless, that of x2 can be written in a form to display its units manifestly, i.e.,

y (x) =
vy
vx

x− 1

2λ
x2, (y(x)Lamb)

with

λ ≡ v2x/g. (5)

The second derivative d2y/dx2 = −1/λ is constant for our parabola and λ is the radius

of curvature at its apex. To associate a physically meaningful length with , we note that, if
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the projectile were launched at 45◦, v2x = s2/2, we would have λ = hmax from Eq. (3) and

Eq. (5). It is significant that λ does not depend on the y component of v⃗.

FIG. 3: (a) A projectile is launched at the origin and lands at the blue star. (b) Since vx is

a constant, the tips of the arrows lie on the vertical dashed line.(c) Rectangle highlighting area

formed by vectors v⃗ and u⃗

The standard way to find the optimal launch angle (αopt) is to write Eqn. (y(x)) as

y (x, α|g, s) and invert it to x (y, α|g, s). Then we set dx (δ, α|g, s) /dα = 0 and solve to

obtain αopt. Clearly, this is a tedious procedure, prone to many algebraic missteps. A more

elegant way is to consider the problem in velocity space. In Fig. 3(a), we provide a sketch

for a trajectory, as well as the velocities at launch (v⃗), landing (u⃗) and a typical location

along the way at some time t: v⃗ (t). These examples are then plotted in the vx-vy plane in

Fig 3(b). Since there is no force in the x direction, vx is a constant of the motion, so that

the tips of these arrows all lie on the vertical dashed line. Meanwhile, as the acceleration is

a constant in y, we have

vy (t) = vy (0)− gt, (6)

so that the tips simply “move” (at uniform “speed”) down the dashed line. At landing,

occurring at tend, we have uy = vy (0)− gtend so that

gtend = vy (0)− uy. (7)

Note that, as we are focusing on a projectile on the downward part of the parabolic path,

uy is negative. Thus, it is trivial to see that the right side of the above is just the “distance”

between the tips of v⃗ and u⃗., i.e., the “length” of the gray rectangle in Fig 3(c). Meanwhile,
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the “width” is precisely vx so that the area of this rectangle is just vxgtend. But, vxtend is

nothing but the physical distance between the launch and landing sites, i.e., the range ρ.

So, we finally arrive at

gρ = rectangle area. (8)

Comparing Fig.1(b) in the “brain teaser” with Fig. 3(c) here, we see that our problem of

maximizing the range (ρ) is precisely the same[22] as maximizing the rectangle’s area (A),

while the “lengths” L1,2 correspond to the magnitudes |v⃗| and |u⃗| respectively. The former

is of course just the launch speed s. The latter can be determined from energy conservation:

1

2
m |u⃗|2 = 1

2
m |v⃗|2 +mgδ, (9)

where we understand δ > 0 to be the (vertical) distance of the landing site below that of

the launch (the case of shot puts, but not for basketball shots). Thus,

|u⃗| = s
√

1 + 2gδ/s2 = s
√
1 + δ/hmax. (10)

In all cases, the condition for maximizing A is γ = 90◦, which leads us to the following

conclusion: [11]. Of course, it is also contained in the vector product approach[5].

The initial and final velocities in the trajectory which optimizes the shot put range are

orthogonal.

A. Various results

From the geometric solution and the conclusion above, the first consequence is an answer

to the original question: What is αopt? Consider the implications of Eqn. (2) for the velocity

rectangle: vx/vy = |v⃗| / |u⃗|. Using (10), we arrive at

cot2 αopt = 1 +
δ

hmax

, (11)

which is essentially the same as the expression often found in the literature: sin2 αopt =

[2 + 2gδ/s2]
−1
. The advantage of ours is that the right side is not only manifestly dimen-

sionless, the reduction to the known limits of δ = −hmax, 0, and ∞ is trivial. Here, recall

that δ is the distance of the landing site below the launch, so that δ = −hmax means the

projectile is stopping above the launch site by the maximal amount. For that, the launch

condition is obviously “straight up!”
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In this connection, we believe it is better to use the y coordinate itself, rather than having

to remember that positive δ’s go with “below.” So, launching from the origin (x, y) = (0, 0), if

we want to maximize the range while demanding the projectile lands at y (on the downwards

journey), then the optimal angle needed is

cot2 αopt = 1− y

ymax

, (12)

where we have used the notation ymax instead of hmax, as ymax immediately signifies the

maximum y achievable (by an objected launched with a given speed).

Another manifestly dimensionless expression is to use the ratio of the kinetic energies

(KE) directly:

cot2 αopt =
KEend

KElaunch

. (13)

The right is, of course, also just 1+PEgain/KElaunch. All of these manifestly dimensionless

forms highlight the physical ratios which control the optimal angle.

Finally, there is another way to express the optimal angle for launch, namely, to provide

the appropriate “partition” of the total kinetic energy available at launch (KElaunch =

ms2/2) into a fraction we can associated with translation in x (mv2x/2, denoted by KEx)

and the remainder, associated with y (KEy ≡ mv2x/2). The resultant optimal “partition” is

given by
KEx

KEy

=
KEend

KElaunch

. (14)

Note that, as might be expected intuitively, this expression directs us to shoot the projectile

more/less vertically if we want to reach a target higher/lower than the launch site. Of course,

we recover the equal partition (i.e., αopt = 45◦) we expect, if the two heights are the same.

IV. NOVEL PERSPECTIVES

In addition to recovering well known results (in new guises), we present some new per-

spectives of this problem. The simplest is self-evident, though not often stated explicitly:

The time reversed trajectory of the shot-put problem is that for the basketball problem

(provided they have the same height difference |δ|). The rest of this section is devoted to

less obvious, we believe, connections.
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A. Duality

Duality is not a precise concept. Yet, examples abound in many areas of both mathe-

matics and physics. Typically, it links two aspects of one problem (or an object) in some

complementary manner, while its specific role comes from the precise definition of “com-

plementarity.” In physics, wave-particle duality is a well known, century-old notion. In

statistical physics, Kramers-Wannier duality[12] appeared some four decades later, while

duality links the Kosterlitz-Thouless transition[16] with the roughening of surfaces[21] in

the 1980s. The connection between spin systems and lattice gauge theories[17] is another

excellent example. More recent and esoteric is the duality between certain string theories of

quantum gravity and conformal theories of gauge fields[13]. In mathematics, n-dimensional

hypercubes are considered to be dual to (d− n)-dimensional ones in d-dimensional space.

(e.g., lines being duals to squares in 3 dimensions). Each Platonic solid has a dual partner

(though the tetrahedron is “self-dual”). In linear algebra, we have vector spaces and their

duals. Fourier transforms are duals, as are Legendre transforms[14]. Many more forms of

duality in mathematics are known [15]. One major property in common is that some specific

operation is defined to obtain, from some “original” X , its dual X ∗. Further, carrying out

the operation twice will return one to the original: X ∗∗ = X .

Here, let us focus on a much simpler set of concepts of duality, namely, points on a line

on a plane. Simplest examples include regarding the pair of points (x,−x) or (x, 1/x) as

duals of each other. Clearly, the operations here are “taking the negative of ...” and “taking

the inverse of ...”, respectively. Combining them also defines a duality relation (x,−1/x),

one which is relevant to our shot-put basketball problem.

We have seen that for the optimal trajectory of a projectile, the launch and landing

velocities are orthogonal (restricting our considerations to cases where the vertical velocities

are of opposite signs). In our original setup, the coordinates of the two sites are, for the

shot-put problem, (x, y) = (0, 0) and (ρ,−δ). Of course, this optimal trajectory is part of

the parabola

y = (tanαopt)x− gx2

2 (s cosαopt)
2 . (15)

Here, it is most convenient to cast the parabola in terms of a standard, normalized form

η =
(
1− ξ2

)
/2. (16)
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(See Fig. 4a and Appendix for details for the explicit transformation from (x, y) to (ξ, η).)

In the ξ-η plane, it is clear that the launch/landing site is in the second/fourth quadrant for

the shot-put problem (assuming the projectile moves in the +ξ direction). For the basketball

case, they are in the third and first quadrants, as illustrated in Fig. 4b. Meanwhile, the

direction of the velocities at (ξ, η) are given by the slopes, i.e., dη/dξ = −ξ. That the

velocities at (ξ, η) and (ξ∗, η∗) are orthogonal means that their slopes are negative inverses

of each other, i.e.,

−ξ =
1

ξ∗
=⇒ ξξ∗ = −1. (17)

In this sense, we may consider the launch/landing sites of the optimal trajectory to be “dual”

to each other. Of course, as time reversal partners, the shot-put and basketball problems

are “dual” to each other also.

FIG. 4: (a) A standard, normalized parabola (solid line) with it directrix (dashed line). (b) Dual

points for the shot put (solid dots) and the basketball (open circles) problem. (c) An incoming

beam (dashed line) from below, parallel to the axis, when reflected from a point, travels through

the focus to the dual point and becomes an outgoing beam to the axis.

Squaring both sides of Eqn. (17), this duality relationship in η reads

(2η − 1) (2η∗ − 1) = 1. (18)

Further, the figures give the impression that the line joining the dual points will run

through the focus (origin in the ξ-η plane). To prove that, we compute the ratios

η

ξ
=

1

2

[
1

ξ
− ξ

]
;

η∗

ξ∗
=

1

2

[
1

ξ∗
− ξ∗

]
. (19)

But, due to Eqn. (17), the right sides are identical. This fact implies that the right triangle

involving (ξ, η), the origin, and the ξ-axis is similar to the one involving the dual point

(ξ∗, η∗), the origin, and the ξ-axis.
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Remarkably, there is a connection between our problem and one in simple (geometric)

optics. If we place a mirror on the standard, normalized parabola and let a light beam

parallel to η-axis incident on any point on it from below, the beam will be reflected to the

focus. Thereafter, it will continue to the dual point and be reflected as an outgoing beam

parallel to the axis. In Fig.3c, we illustrate this optics analogy of the shot-put problem. Of

course, the same analysis holds for a beam incident on the dual point so that its trajectory

is just the time-reversed version. In this sense, time reversal and duality are usual notions

for light beams, just as we may regard the basketball problem as the time reversed or dual

of the shot-put problem.

FIG. 5: (a) A projectile is launched at the origin and lands at the star. Note the associated

right triangle (shaded) and the trigonometric relation Eqn. (20). The red line is tangent to the

trajectory at launch, with the solid black line being its orthogonal. (b) Two angles within the right

triangle, both being equal α. (See text.)

Finally, we can draw another conclusion from this optics dual relationship. In Fig. 5a,

we show an optimal trajectory and place a right triangle linking the launch/landing points,

the horizontal and the y-axis (in the x-y plane). The distances δ and ρ are also shown,

so that the ratio ρ/δ is just the tangent of the angle at the top of the triangle. In Fig 5b,

recognize the dashed lines are precisely those in the trajectory of the light beam. Meanwhile,

the thin solid lines are the tangent and the normal to the parabola at the launch site (also

the incident site for our light beam). Therefore, the angles are all αopt (as marked, with
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subscripts suppressed). So our conclusion from this geometric picture is

tan 2αopt =
ρopt
δ

, (20)

a result much more easily obtained than via the tedious algebra implied in Lichentenberg

and Wills[3]. Note that, since αopt is a function of (g, s, δ), this result implies we have ρ as

a function of (g, s, δ) alone. That will be the topic of the next subsection.

B. Envelope

When the projectile is launched from the origin with the same s and all possible α’s, these

trajectories will cover a region of the x-y plane. The boundary of this region is referred to

as the envelope (of all trajectories). If we can find its functional dependence yenv (x), then

the “inverse” of it – xenv (y) – is clearly the maximum range for the projectile to land at a

given height, i.e., ρ (δ|g, s). Now, the meaning of yenv (x) is also clear, as it represents the

maximum height for the projectile to land for a given range, i.e., δ (ρ|g, s). But the latter is

a much more straightforward problem to solve, in the following sense.

We start with trajectories given by Eqn. (y(x)), but written with the traditional angle

α as the variable parameter (and fixed s, g): y (x) = x tanα − gx2/ (2s2 cos2 α). But, for

finding αopt, there is no reason to use α instead of

τ ≡ tanα, (21)

as the variable, so that we arrive at a simple quadratic

y (x) = xτ − x2

4hmax

(
τ 2 + 1

)
. (22)

As we vary τ , the maximum clearly occurs at

τopt = 2hmax/x. (23)

In terms of the notations used above, this equation might be written as tanαopt = 2hmax/ρ,

which can be regarded as the complement to Eqn. (11).

Substituting (23) back into y (x) gives us the envelope equation:

yenv (x) = hmax −
x2

4hmax

, (24)
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which can be cast in the form of a standard normalized parabola

yenv
2hmax

=
1

2

[
1−

(
x

2hmax

)2
]
, (envelope)

with (ξ, η) = (x, yenv) /2hmax ! Let us emphasize, this is not the normalized parabola of

the optimal trajectories discussed in the previous section. The “envelope parabola” here is

characterized by just a single parameter (hmax), whereas the optimal trajectories are specified

by two (any pair from hmax, ρ, δ).

Before closing, let us consider physical arguments which also provides this envelope equa-

tion. In this problem, we can expect the fixed quantities g, s not to appear separately.

Instead they appear only in the combination hmax = s2/2g, a quantity with units of length.

Thus, we can expect yenv (x) or its inverse to take the form ρ (δ|g, s) = ρ (δ|hmax). Further,

by dimensional analysis, the relation must appear in the dimensionless (or scaling) form of

yenv
hmax

= f

(
x

hmax

)
. (25)

Moreover, the envelope must be an even function of x, as the projectile can be launched to

the right or the left. Finally, for large x, it is clear that yenv ∝ −x2. If we now assume that

yenv is a polynomial function of x, then f (χ) must be quadratic, i.e., of the form a + bχ2.

Fixing a to unity is trivial, as the maximum height a purely vertical launch can reach is

hmax. Fixing b comes from considering the x → ∞ limit, where vy = 0, so that b = 1/4 and

(from y = −gt2//2 and x = st =⇒ y = −x2// (2hmax)
2). The final result is (envelope)

again.

To conclude, let us reiterate how this envelope equation can be used in our original

problem: Suppose a projectile is launched with speed
√
2ghmax and various angles. If

we want it to get to a target a distance ρ away, then the highest point it can reach is

hmax

[
1− (ρ/2hmax)

2]. If we want it to land a height δ above the launch site, then the fur-

thest it can reach is 2hmax

√
1− δ/hmax. Clearly, the result reduce to the appropriate values

in the well known limits.

V. CONCLUDING REMARKS

In this paper, we revisit the ancient problem of finding the optimal angle of release of a

projectile (in uniform gravity) for it to land at a specified height above/below the launch
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site (on its downward journey). We present a simple path to the answer using geometric

concepts alone (i.e., without calculus). The main bonus of this route is that, for the optimal

trajectory, the velocities at the launch and landing sites are orthogonal. Though not entirely

new (Refs. 4-8), we believe the details we provided are more “user (student) friendly.”

Beyond revisiting this issue, we presented two novel perspectives: duality and envelope. In

the former, we showed not only the intimate relationship between the launch and landing

sites (in the optimal trajectory), we also connect this aspect to certain geometric optics of a

parabolic mirror (an incoming beam parallel to the axis of the mirror hitting both dual points

before becoming an outgoing beam). In the latter, we demonstrated that the envelope of all

trajectories (starting at x = y = 0 with the same speed), yenv (x), is easily found. Further,

it provides precisely the needed information for finding the optimal condition for launch –

for either reaching the maximum height (or range), given the target is located at a certain

range (or height).

Though neither of the novel aspects are crucial to solving the problem at hand, we be-

lieve they serve a different purpose here. As different parts of a physics curriculum often

appear disjoint to students (mechanics vs. electrodynamics, relativity vs. quantum me-

chanics, optics vs. thermodynamics, etc.), it is useful to offer them wider perspectives

whenever possible. Thus, we should point out connections across different parts of physics.

Examples include renormalization group in quantum field theory and critical phenomena in

statistical physics[18], spontaneous symmetry breaking in superconductivity and the Higgs

mechanism[19], particle motion in a double-well potential and the density profile of, say, a

liquid-vapor interface, and most recently, the quantum Hall effect and El Niño[20]. Indeed,

emphasizing links across different areas will encourage students to explore interdisciplinary

cross-fertilization. In this context, duality is not only a key concept within one topic (e.g.,

vector spaces) but also important links between subjects (e.g., lattice gauge theories and

spin systems). Similarly, the envelope of trajectories should provide a fresh and simple view

of both the general and the original problem of optimization. The crucial lesson for con-

sidering these “diversions” is that the wider one’s perspective on an issue, the deeper one’s

insight may develop. Clearly, techniques successful in one area are often effective in another.

Thus, building bridges across disciplines should be a valued endeavor.

Let us end by noting that a much more difficult task is to solve the similar problem

(optimal trajectories for a projectile) on a spherical earth. Specifically, there are several
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complications arising from the loss of translational invariance in the “vertical” direction.

One is the presence of another dimensionless parameter: the ratio Rlaunch/Rlanding associated

with the radii of the two sites (to the center of gravity). Another is, obviously, the radius of

the earth (Rearth) though that may be taken as zero for the sake of mathematical simplicity.

Finally, there are the possibilities of (a) escape, where the projectile takes off to infinity, and

(b) attaining a circular orbit with finite s. As a consequence, we believe there is no simple

geometric solution to this generalization of the shot-put problem.

VI. APPENDIX

Any quadratic function y (x)

y (x) = c0 + c1x+ c2x
2 (26)

can be cast in standard form. In physics/engineering terms, let’s choose the units of x and y

to be the same (e.g., cm), so that the units of ck are those of x1−k. For our convenience, we

will study a downwards pointing parabola (i.e., c2 < 0) here, while |c2| is half the curvature

(y′′). Using the freedom to shift the origin of (x, y) and to rescale, we can change variables

to (ξ, η) so that the parabola is represented by

η =
1− ξ2

2
⇔ ξ2 = 1− 2η. (27)

Note that η − 1/2 = −ξ2/2 is not merely in standard form, i.e., (η − η0) = κ (ξ − ξ0)
2 /2,

with κ being the curvature. It is also “normalized” in the following sense: The focus of the

parabola is located at the origin, (ξ, η) = (0, 0), its directrix is at η = 1, it crosses the ξ-axis

at ±1, and the radius of curvature is 1.

The specifics of the transformation are

ξ =
x

λ
− c1; η =

y − c0
λ

− c21 +
1

2
, (28)

with

λ =
1

2 (−c2)
. (29)

To check, we see that
1

2
− 1

2
ξ2 =

1

2
− c21 + c1

x

λ
− 1

2

(x
λ

)2

, (30)
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which is indeed just η, since

y

λ
=

1

λ

[
c0 + c1x+ c2x

2
]
=

c0
λ

+ c1
x

λ
− 1

2

(x
λ

)2

. (31)
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