Riding on a Light Beam

Relativistic Doppler Shift And Measuring ct, x

Lewis F. McIntyre CS-AAPT April 2, 2022

mcintyrel@verizon.net

AGENDA

• EVENTS, OBSERVATIONS & MEASUREMENTS

- Event=Measurement at v < < c
- Galilean Transform

• THE LORENTZ TRANSFORM

- Minkowski & Brehme Diagrams
- Buried Assumption: Event=Measurement

• VELOCITY TRIANGLE

- Observation & Measurement
- Brehme Angle Beta
- Worldline vs. Timeline
- Rotated Reference Frames, Translating at *c*.
- LIGHT BETWEEN REFERENCE FRAMES
 - Tangent to Observer's Timeline
 - Role of Doppler Shift
 - Simultaneous with Stationary Objects, Doppler shift = 1

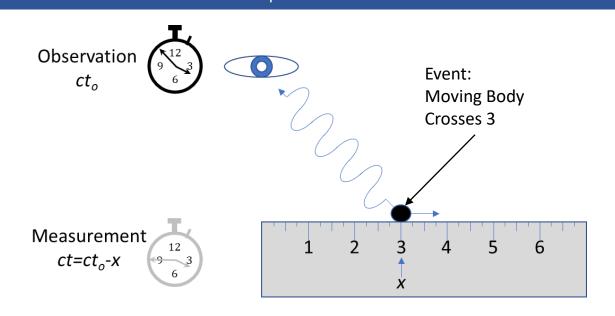
• MULTIPLE REFERENCE FRAMES AND THE INVARIANT $c\tau$

EVENTS, OBSERVATIONS & MEASUREMENTS

Definition

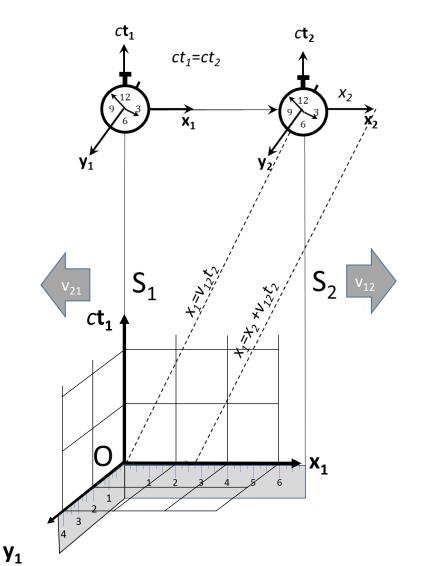
- NORMALLY NEGLIGIBLY SEPARATED IN TIME OR SPACE FOR *v*<<*c*: NOT TRUE FOR HIGHER *v*!
- <u>EVENT</u>: Proper Event with Zero Spatial Coordinates that Generates Light (Time of Transmission)
- <u>OBSERVATION</u>: Proper Time (Zero Spatial Coordinates) of Receipt of Light from an Event in One Reference Frame By an Observer in Another Reference Frame (Time of Receipt)
- <u>MEASUREMENT</u>: Determination of *ct*, *x* Coordinates in Observer's Reference Frame.

EVENTS, OBSERVATIONS & MEASUREMENTS Low Speed Solution



- Observer Observes Light from Body at ct_o Simultaneous with Light from x
- Body was "at" x at Time $ct=ct_o-x$
- Works for Low Speed, But Not High Speed Due to Doppler

EVENTS, OBSERVATIONS & MEASUREMENTS Galilean Transform



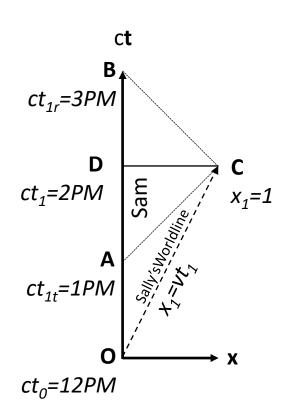
 $x_1 = x_2 + v_{12} \cdot ct_1$ $ct_1 = ct_2$

Transit Time from Event to Measurement, Doppler Shift Both Negligible

WHAT TIME IS IT, SALLY?

- SALLY LEAVES EARTH AT O
 - $ct_0 = 12$ PM
 - v/c=0.5c
- SAM TRACKS SALLY BY RADAR ON HER WORLDLINE OC
- AT A, SAM ASKS SALLY WHAT TIME IT IS
- AT B SAM GETS HER REPLY AND LOCATES HER AT C BY RADAR EQUATION:
 - $x_1 = (ct_{1r} ct_{1t})/2$ • $ct = (ct_{1r} + ct_{1t})/2$
- =1 light hour =2PM

- v = x/ct = 0.5
- BUT SALLY SAID HER CLOCK READ 1:43PM WHEN SHE GOT HIS REQUEST!



• SIMPLE ENOUGH! TRANSFORMS MEASUREMENT FROM ONE REFERENCE FRAME TO ANOTHER

$$x_2 = \frac{x_1 + \left(\frac{v}{c}\right)ct_1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

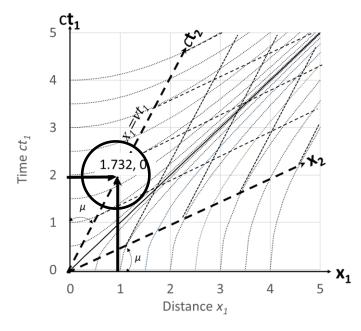
$$ct_2 = \frac{ct_1 + \left(\frac{v}{c}\right)x_1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

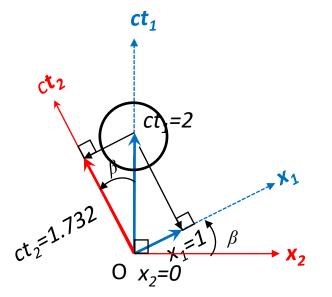
• FOR *v*<<*c*, *x*<<*c*t, BECOMES THE GALILEAN TRANSFORM:

$$\begin{array}{l} x_2 \cong x_1 + vt_1 \\ ct_2 \cong ct_1 \end{array}$$

• BUT WHAT DOES IT MEAN?

LORENTZ TRANSFORMATION





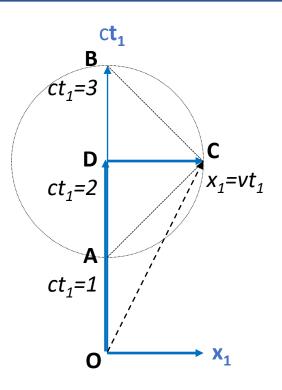
Minkowski Diagram World Line *x*=*vt* and Constant $c\tau = \sqrt{(ct_1)^2 - x_1^2}$

Brehme Diagram Reference Frame Orthogonalities Expanded/Reduced by Brehme Angle B=sin⁻¹(v/c)

- ASSUMPTION: EMITTER'S EVENT (1.732,0) AND THE OBSERVER'S MEASUREMENT (2,1) ARE THE SAME POINT
- THEREFORE, THE EMITTER'S AND OBSERVER'S CLOCKS AND RULERS MUST DIFFER

Observation & Measurement

- DRAW A CIRCLE ABOUT $D=ct_1$, OF RADIUS x_1
 - A is Time of Emission of Radar Pulse, Sam's Query
 - B is Time of Receipt of Radar Pulse , and Sally's Reply
 - C is Sally's Location Determined by A and B
 - $x_1 = (3-1)/2 = 1$
 - $ct_1 = (3+1)/2 = 2$
 - $v = x_1/ct_1 = 0.5c$

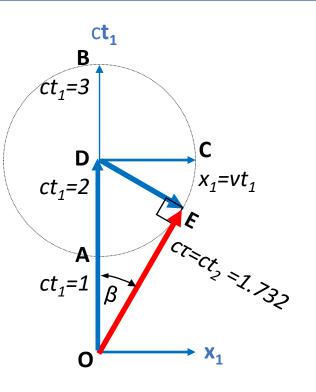


The Brehme Angle Beta

- DRAW LINE FROM O TANGENT TO CIRCLE AT E
- OE IS THE INVARIANT

$$c\tau = ct_2 = \sqrt{(ct_1)^2 - x_1^2} = ct_1 \sqrt{1 - \left(\frac{v}{c}\right)^2}$$

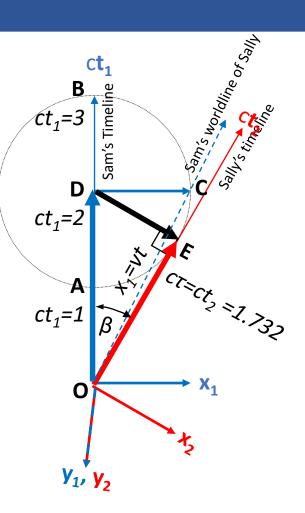
- VELOCITY TRIANGLE IS ODE
- OE SEPARATED FROM SAM'S TIME AXIS OD BY Brehme Angle $\beta = sin^{-1}(v/c)$



Worldline vs. Timeline

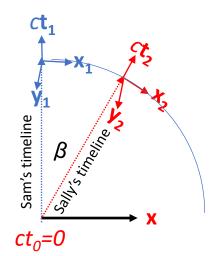
- VELOCITY TRIANGLE ODE:
 - Sally's *ct*₂ Time Axis through OE
 - Sally's x_2 Spatial Axis Normal to OE, in Direction of Motion
- WORLDLINES AND TIMELINES
 - Minkowski Worldline OC
 - Locus of Successive Measurement of Sally by Sam
 - Timelines OD and OE (NEW)
 - Locus of Proper Clock Ticks from O by Sam and Sally
- TRIGONOMETRIC LORENTZ TRANSFORM

$$x_1 = \frac{x_2 + ct_2 \cdot \sin(\beta)}{\cos(\beta)}$$
$$ct_1 = \frac{ct_2 + x_2 \cdot \sin(\beta)}{\cos(\beta)}$$

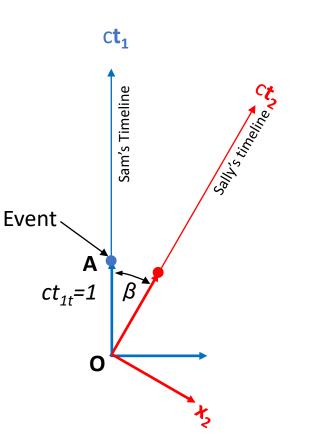


Rotated Reference Frames Propagating at c

- ALL MATTER PROPAGATES AT PROPER VELOCITY *c* IN A SINGLE DIRECTION
 - That direction defines its time axis unit vector *c***t**
 - Spatial axes' unit vectors **x**, **y**, **z** normal to c**t**.
- RELATIVE VELOCITY: PROJECTION OF ONE BODY'S TEMPORAL VELOCITY ONTO TEMPORAL/SPATIAL AXES OF ANOTHER
 - Through β and Lorentz Transform
 - Does Not Exist as an Independent Variable
 - Maximum Relative Velocity c at $\beta = 90^{\circ}$



• SAM REQUESTS SALLY'S TIME AT EVENT A=(1,0)

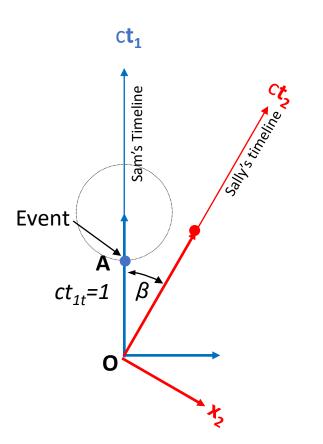


Tangent to Observer's Timeline, v=c

• LIGHT PROPAGATES AS A SPHERE EXPANDING AT *c* IN FOUR-DIMENSIONAL SPACE

$$(c\Delta t)^2 = \Delta x^2 + \Delta y^2 + \Delta z^2$$

- ANCHORED AT POINT OF EMISSION A
- CENTERED ON EMITTER

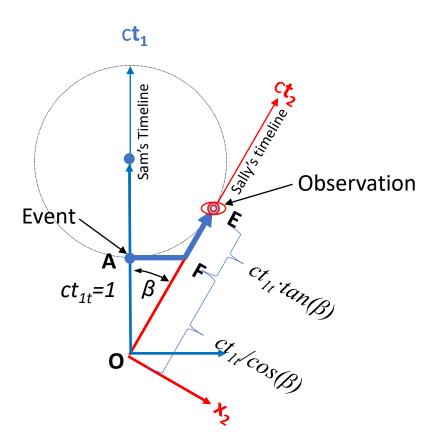


Tangent to Observer's Timeline, v=c

- EVENT OBSERVED AT E:
 - Light Sphere Tangent to Sally's TimeLine
 - Radial Velocity of *c*
- TIME INTERVAL OA DOPPLER-SHIFTED ALONG AFE TO TIME OF RECEIPT OE

$$ct_{2r} = ct_{1t} \frac{1+\sin(\beta)}{\cos(\beta)}$$

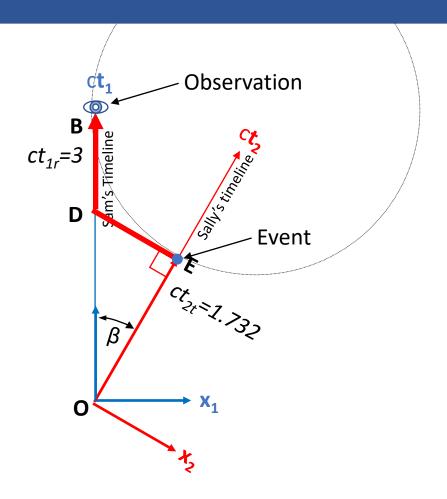
Equal units of space in the reference frame of origination, to equal units of time in reference frame of receipt.



Tangent to Observer's Timeline, v=c

- SALLY'S REPLY IS EVENT E, SIMULTANEOUS WITH HER RECEPTION OF A
 - Tangent to Sam's Timeline at B
 - Doppler-Shifted Along Path EDB to Sam's Time of Observation at B (3, 0):

$$ct_{1r} = ct_{2t} \frac{1+\sin(\beta)}{\cos(\beta)} = 3$$



Sam Determines Sally's Location "at" C

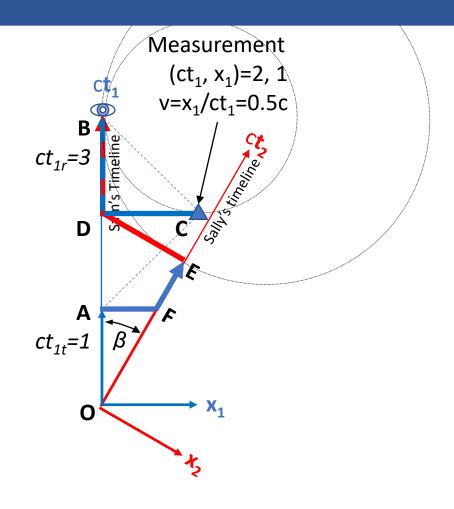
• SAM LOCATES SALLY AT C:

$$x_{1} = \frac{ct_{1r} - ct_{1t}}{2} = 1$$

$$ct_{1} = \frac{ct_{1r} + ct_{1t}}{2} = 2$$

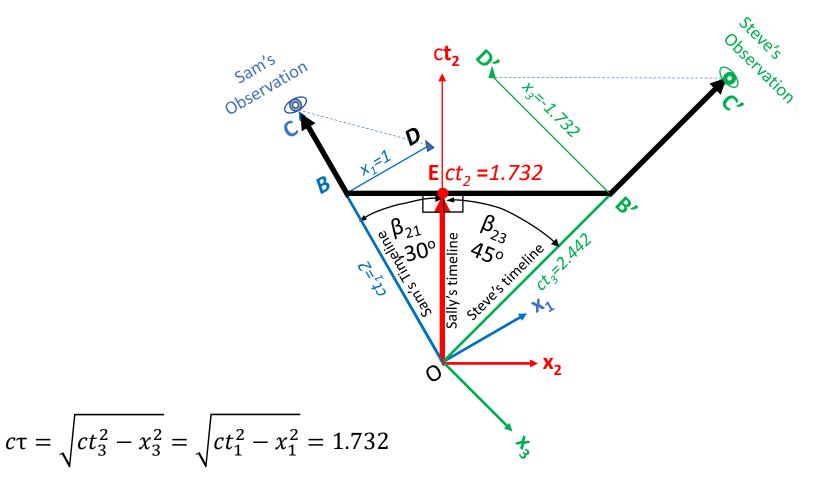
$$v = \frac{x_{1}}{ct_{1}} = 0.5$$

- LIGHT FROM C SIMULTANEOUS AT B WITH LIGHT FROM F:
 - Sally is "at" C.
 - Different Doppler Shifts
 - CDB=1.0
 - EDB=1.732



MULTIPLE REFERENCE FRAMES

All Reference Frames Agree on Proper Time of the Event



SUMMARY

• VELOCITY TRIANGLE

- Separates Event, Observation and Measurement
- Eliminates "Rubber Rulers" and "Asynchronous Clocks"
- The Measurement of Both Clock and Rulers Affected by Relativistic Doppler Shift
- PROVIDES MORE CLEAR, LESS MYSTERIOUS DEMONSTRATION OF ALL ASPECTS OF SPECIAL THEORY USING SIMPLE GEOMETRY
 - Additive Velocities
 - Mass, Momentum and Energy
- CAN BE APPLIED TO ACCELERATED (NON-INERTIAL) SYSTEMS