PULLING A SPOOL

Carl E. Mungan, Physics Dept, U.S. Naval Academy, Annapolis MD

A spool of ribbon is on a horizontal table.
The ribbon is pulled at an angle relative to the table. It is pulled gently enough that the spool rolls without slipping.

VOTE! Raise your hand if you think the spool will:

(a) roll forward

(b) roll backward

(c) it depends

Let's try the demo and see!

So the direction of rolling depends on the angle of pulling:

At near-horizontal angles the spool rolls FORWARD but at near-vertical angles it rolls BACKWARD.

If so, there must be some intermediate angle at which it cannot roll without slipping. Call that the critical pulling angle $\theta_{\text {c }}$. What determines its value?

For a cylindrically symmetric spool, θ_{c} is determined entirely by its inner radius R_{i} and outer radius R_{0} :

Neither the pulling force F nor the friction f exert a torque about the contact point P with the table and so the spool cannot rotate forward or backward around P.

$$
\theta_{\mathrm{C}}=\cos ^{-1}\left(R_{\mathrm{i}} / R_{\mathrm{O}}\right)
$$

There are 4 possible ranges for the pulling angle to get rolling without slipping.

The first range is $0^{\circ} \leq \theta<\theta_{\mathrm{c}}$:
Only F has a torque about P . That proves the spool rolls forward.

Then the friction f must point backward to give a clockwise angular acceleration.

ROLLS RIGHTWARD

The second range is $\theta_{\mathrm{c}}<\theta<90^{\circ}$:

Only F has a torque about P . That implies the spool rolls backward.

Then the friction f must point backward to cause the spool to translate backward.

There may be a second special angle: a maximum angle $\theta_{\mathrm{m}}>90^{\circ}$

at which the friction force becomes zero!

N 2 L for force: $-F \cos \theta_{\mathrm{m}}=M a_{x}$
N2L for torque: $F R_{\mathrm{i}}=I \frac{a_{x}}{R_{\mathrm{O}}}$
eliminate $F: \quad-\cos \theta_{\mathrm{m}}=M R_{\mathrm{i}} R_{\mathrm{O}} / I$
θ_{m} exists iff $I \geq M R_{\mathrm{i}} R_{\mathrm{o}}$

The third range is $90^{\circ}<\theta<\theta_{\mathrm{m}}$ (if θ_{m} exists)

$$
\text { or } 90^{\circ}<\theta \leq 180^{\circ} \text { (if not): }
$$

Only F has a torque about P .

That proves the spool rolls forward.
Eliminate a_{x} between N2L for force and for torque to get

$$
f=F \frac{\cos \theta-\cos \theta_{\mathrm{m}}}{1+M R_{0}^{2} / I}
$$

so that the friction f points forward.

$$
\begin{aligned}
& \text { The fourth and final range is } \\
& \theta_{\mathrm{m}}<\theta \leq 180^{\circ} \text { (if } \theta_{\mathrm{m}} \text { exists): }
\end{aligned}
$$

Only F has a torque about P .

So again the spool rolls forward.

SUMMARY TABLE

(assuming ribbon pulling defines the forward direction)

Angular Range	Direction of Rolling	Direction of Friction
$0^{\circ} \leq \theta<\theta_{\mathrm{c}}$	forward	backward
$\theta_{\mathrm{c}}<\theta<90^{\circ}$	backward	backward
$90^{\circ}<\theta<\theta_{\mathrm{m}}$	forward	forward
$\theta_{\mathrm{m}}<\theta \leq 180^{\circ}$	forward	backward

All of these directions can be obtained by quick qualitative arguments except for friction at angles beyond 90° which requires a formal N 2 L analysis.

Friction need not be opposite the direction of rolling!
Nor need it be opposite the direction of pulling!

Pull at a critical angle of 60° :

Starting from the origin, static friction prevents the spool from moving and we rise up along line A until the maximum value of the static friction f_{s} max is attained. Since $\mu_{\mathrm{k}}<\mu_{\mathrm{s}}$ we must reduce the applied force by backing up along line B once slipping starts. At the maximum value of the kinetic friction $f_{k \text { max }}$ the spool slips in place. From that point, if we now increase the pulling force, we will progressively reduce the normal force and hence the kinetic friction along line C until we lift the spool off the table once the friction and normal forces fall to zero.

QUESTIONS?

Comments welcome by email to mungan@usna.edu.

Visit my webpage at usna.edu/Users/physics/mungan.

