

Kent Yagi University of Virginia

CSAAPT Spring 2022
April 2nd 2022

General Relativity (1915)

Gravity = Curvature of Spacetime

We feel spacetime curvature as gravity!

Black Hole Merger! (Sept. 2015)

Gravitational wave signal, at last!!

How Large is a Black Hole?

escape velocity

$$E_{\text{tot}} = \frac{1}{2}mv^2 - G\frac{mM}{R}$$

$$v = v_{\text{esc}} \text{ when } E_{\text{tot}} = 0$$

$$v_{\text{esc}} = \sqrt{\frac{2GM}{R}}$$

$$= 11.2 \text{km/s} \left(\frac{M}{M_{\text{Earth}}}\right)^{1/2} \left(\frac{R}{R_{\text{Earth}}}\right)^{-1/2}$$

Black Hole radius

$$v_{\rm esc} \to c$$

$$R_{\rm BH} = \frac{2 G M}{c^2}$$

$$= 30 \text{km} \left(\frac{M}{10 M_{\rm Sun}}\right)$$

Extracting Physical Parameters from Data

merger separation: [Kepler's 3rd Law] $r_{\rm merg} \sim \left(\frac{GM_{\rm tot}}{\pi^2 f_{\rm merg}^2}\right)^{1/3} \sim 350 {\rm km}$ $M_{\rm tot} \sim \frac{c^3}{G} f^{-11/5} \dot{f}^{3/5} \sim 65 M_{\rm Sun}$

total mass:

[Kepler's 3rd law]

$$\frac{P^2}{r^3} = \frac{4\pi^2}{GM}$$

Basic Physics of Binary Black Hole Merger

Ann. Phys. (Berlin) 529, No. 1-2, 1600209 (2017) / DOI 10.1002/andp.201600209

The basic physics of the binary black hole merger GW150914

LIGO Scientific and VIRGO Collaborations*,**

Received 5 August 2016, revised 21 September 2016, accepted 22 September 2016 Published online 4 October 2016

[arXiv: 1608.01940]

Where are we at...?

~ 85 black hole mergers

~ 2 neutron star mergers

~ 2 black hole / neutron star mergers

What comes next...?

Astrophysics

Gravitational Physics

Gravitational Waves

A NEUTRON STAR: SURFACE and INTERIOR

CORE:
Homogeneous
Matter

ATMOSPHERE
ENVELOPE
CRUST:
ENVELOPE
CRUST:
CORE of pean
INNER CORE

Nuclear Physics

Astrophysics

- ✓ What is the origin of gamma-ray bursts?
- ✓ How do black hole binaries form?

Gravitational Physics

Gravitational Waves

Nuclear Physics

Astrophysics

- ✓ What is the origin of gamma-ray bursts?
- ✓ How do black hole binaries form?

Gravitational Waves

- ✓ What are the properties of supranuclear matter?
- ✓ How do heavy elements form?

Nuclear Physics

Gravitational Physics

Astrophysics

- ✓ What is the origin of gamma-ray bursts?
- ✓ How do black hole binaries form?

Gravitational Waves

- ✓ What are the properties of supranuclear matter?
- ✓ How do heavy elements form?

Nuclear Physics

Gravitational Physics

- ✓ Is General Relativity correct everywhere?
- ✓ Is there a theory of everything?

Astrophysics

- ✓ What are the properties of supranuclear matter?
- ✓ How do heavy elements form?

Nuclear Physics

- ✓ What is the origin of gamma-ray bursts?
- ✓ How do black hole binaries form?

Gravitational Waves

Gravitational Physics

- ✓ Is General Relativity correct everywhere?
- ✓ Is there a theory of everything?

- ✓ What is dark matter?
- ✓ What is dark energy?
- ✓ What is inflation?

Planetarium Show on Gravitational Waves at Radford U.

Planetarium Show on Gravitational Waves at Radford U.

Oct. 30 2021

(Thank you Rhett for your help!)

Overall, are you satisfied with today's event?

