Lifetimes of Near-Eternal False Vacua

Theo Jacobson, University of Minnesota

Based on 2012.10555, with Aleksey Cherman

Outline

This talk:

Gaining physical intuition about theories with exact 'decomposition' by breaking the higher form symmetries responsible

1d: Landau problem on a torus

(2d: Charge-p Schwinger model)

(4d: QCD with a modified instanton sum)

A Simple Quantum Mechanical System

(Particle on a torus in a constant B field: "Landau problem")

In Landau gauge,
$$\vec{A}=\frac{p}{2\pi}x\,\hat{y}$$
:
$$L=\frac{1}{2g}(\dot{x}^2+\dot{y}^2)+\frac{p}{2\pi}x\,\dot{y}$$

Relevant global symmetries:

$$(\mathbb{Z}_p)_x : x \to x + \frac{2\pi}{p}, \quad (\mathbb{Z}_p)_y : y \to y + \frac{2\pi}{p}$$

 $(\mathbb{Z}_2)_P : x \to -x, \ y \to -y$

Canonical momenta:
$$p_x = \frac{\dot{x}}{q}, \quad p_y = \frac{\dot{y}}{q} + \frac{p}{2\pi} x$$
 (note: $p_y \sim p_y + p$)

(Symmetry operators:)

$$\hat{U}_x = e^{i\frac{2\pi}{p}\hat{p}_x}\,e^{-i\hat{y}}, \quad \ \hat{U}_y = e^{i\frac{2\pi}{p}\hat{p}_y}, \quad \ (\hat{U}_x)^p = (\hat{U}_y)^p = 1$$

$$\left(\hat{U}_x ext{ charged under } (\mathbb{Z}_p)_y \quad \Longrightarrow \hat{U}_x \hat{U}_y = e^{2\pi i/p} \, \hat{U}_y \hat{U}_x
ight)$$

Central extension of $(\mathbb{Z}_p)_x \times (\mathbb{Z}_p)_y \Longrightarrow$ mixed 't Hooft anomaly)

Hilbert space 'decomposes' into charge sectors: $\mathcal{H} = \bigoplus_{k=0}^{p-1} \mathcal{H}_k$

Mixed anomaly ensures sectors are degenerate:

smallest representation of $\hat{U}_x\hat{U}_y=e^{2\pi i/p}\,\hat{U}_y\hat{U}_x$ is p-dimensional (clock&shift)

$$(\mathbb{Z}_p)_x \times (\mathbb{Z}_p)_y \text{-symmetric}$$
 perturbations:
$$L = \frac{1}{2g} \left(\dot{x}^2 + \dot{y}^2 \right) + \frac{p}{2\pi} x \, \dot{y} + \epsilon \cos(px) + \mu \cos(py)$$

Mixed anomaly ensures sectors are degenerate:

smallest representation of $\hat{U}_x\hat{U}_y=e^{2\pi i/p}\,\hat{U}_y\hat{U}_x$ is p-dimensional (clock&shift)

$$(\mathbb{Z}_p)_x \times (\mathbb{Z}_p)_y \text{-symmetric}$$
 perturbations:
$$L = \frac{1}{2g} \left(\dot{x}^2 + \dot{y}^2 \right) + \underbrace{p}_{2\pi} \underbrace{\dot{y}} + \epsilon \cos(px) + \mu \cos(py)$$

No mixed anomaly \Longrightarrow ordinary representations of symmetries

Two copies of " T_p " model studied in (Aitken, Cherman, Ünsal, '18)

Breaking the Symmetries

Break
$$(\mathbb{Z}_p)_x$$
:
$$L = \frac{1}{2q}(\dot{x}^2 + \dot{y}^2) + \frac{p}{2\pi}x\,\dot{y} + \epsilon\cos(x)$$

Ground state unique, but Hilbert space still 'decomposes' (somewhat trivially!)

Breaking the Symmetries

$$(\mathbb{Z}_2)_P$$
 even $(\mathbb{Z}_2)_P$ odd

States are completely split—no selection rule prohibiting parity-even states from decaying to the unique ground state

Generalizing to Decomposition in QFTs

Charge-*p* **Schwinger Model**

$$1 + 1d$$
 QED:

U(1) gauge field + (massless) Dirac fermion

Komargodski, Sharon, Thorngren, Zhou '17 Anber, Poppitz '18 Misumi, Tanizaki, Ünsal '19 Komargodski, Ohmori, Roumpedakis, Seifnashri '20, ...

$$\mathcal{L} = \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} \gamma^{\mu} (\partial_{\mu} - i \mathbf{p} a_{\mu}) \psi + \frac{i\theta}{2\pi} \epsilon^{\mu\nu} \partial_{\mu} a_{\nu} \qquad \boxed{\mathbf{p} \in \mathbb{Z}}$$

$$\qquad \qquad \mathbf{P} \quad Q_{\mathrm{top}} = \frac{1}{2\pi} \int_{M_2} \epsilon^{\mu\nu} \partial_{\mu} a_{\nu} \in \mathbb{Z}, \text{ so that } \theta \sim \theta + 2\pi$$

• $[e^2] = 2$, photon has d - 2 = 0 physical polarizations

Discrete chiral symmetry:

- ▶ $U(1)_A$ is anomalous: $\psi \to e^{i\alpha\gamma_5}\psi$, $\mathcal{D}\bar{\psi}\mathcal{D}\psi \to \mathcal{D}\bar{\psi}\mathcal{D}\psi$ $e^{i2p\alpha Q_{\mathrm{top}}}$ $\implies \alpha = \frac{2\pi k}{2p}$, $k = 0, 1, \ldots, p-1$
- $ightharpoonup U(1)_A
 ightharpoonup \mathbb{Z}_{2p}$, faithfully $\mathbb{Z}_p^{(0)} = \mathbb{Z}_{2p}/\mathbb{Z}_2$

Bosonization and 1-Form Symmetry

Abelian bosonization (Coleman, '75)

$$\mathcal{L} = \frac{1}{2e^2} (da)^2 + \frac{1}{8\pi} (d\varphi)^2 + \frac{ip}{2\pi} \varphi \, da \qquad \varphi \sim \varphi + 2\pi$$

- ▶ 0-form chiral \longrightarrow shift symmetry $\mathbb{Z}_p^{(0)}: \varphi \to \varphi + \frac{2\pi}{p}$
- ▶ 1-form symmetry $\mathbb{Z}_p^{(1)}:e^{i\oint_C a} \to e^{2\pi i/p}\,e^{i\oint_C a}$

$$\label{eq:equation:equation:equation} \text{EOM of } a_{\mu} \text{: } d\underbrace{\left(\frac{p}{2\pi}\varphi - \frac{i}{e^2} \star da\right)}_{\equiv \ \star j^{(2)}} = 0 \quad \Longrightarrow \quad \begin{aligned} &U_{\alpha}(x) = e^{i\alpha \star j^{(2)}(x)} \\ &\text{is topological (independent of } x) \\ &\text{and } \textit{well-defined if } \alpha = \frac{2\pi k}{p} \end{aligned}$$

$$\langle U_{\frac{2\pi}{a}}(x)\,e^{i\oint_C a}\rangle = e^{2\pi i/p}\langle e^{i\oint_C a}\rangle$$
 if x links C

$$U_{rac{2\pi}{p}}(x)=e^{rac{2\pi}{p}rac{1}{e^2}\star da(x)}\,e^{iarphi(x)}$$
 is the symmetry operator for $\mathbb{Z}_p^{(1)}$

$$U_{\alpha}(x)$$
 charged under $\mathbb{Z}_p^{(0)} \Longrightarrow \left(\mathbb{Z}_p^{(0)} \times \mathbb{Z}_p^{(1)} \text{ mixed anomaly}\right)$

Scalar Effective Potential

Naive picture: vacuum energy density is everywhere finite

Discrete shift (chiral) symmetry spontaneously broken

Finite derivative \implies finite DW tension?

Scalar Effective Potential

Actual picture: many branches

DW must implement transition between branches $\mbox{Not possible in theory with } \mbox{\it just} \mbox{ a charge-p fermion}$ $\langle U_{\frac{2\pi}{3}}(x) \rangle = 1, e^{2\pi i/3}, e^{4\pi i/3} \mbox{ in the 3 distinct branches}$

Connection to Mixed Anomaly

More formally:

No dynamical domain wall \iff Finite-volume path integral with in chiral limit $\mathbb{Z}_p^{(0)}$ -twisted b.c.s ' \tilde{Z} ' vanishes

Usually expect \tilde{Z} to be dominated by DW, finite action in finite volume $\tilde{Z} \sim e^{-TV}$

'Universes'

Finite-volume path integral with $\mathbb{Z}_p^{(0)}$ -twisted boundary conditions and any local operator insertion vanishes

$$\int_{(\beta)=\varphi(0)+\frac{2\pi}{p}} \mathcal{D}\varphi \,\mathcal{O}(x) \, e^{-\int_{T^2} \mathcal{L}} = 0$$

m=0: states with different $\langle e^{iarphi}
angle$ are not mixed by local operators

Generic m: states with different $\langle U_{\frac{2\pi}{p}} \rangle$ are not mixed by local operators

- \blacktriangleright only non-local operators $e^{i \int a}$ can connect the states
- stronger than superselection rule: applies at finite volume

Noted in 2d Ando, Hellerman, Henriques, Pantev, Sharpe '07 Sharpe '14, '19; Anber, Poppitz '18; Aminov '19

Recently such sectors have been dubbed 'universes'

Tanizaki, Ünsal '19;

Komargodski, Ohmori, Roumpedakis, Seifnashri '20

Scalar Effective Potential

Turn on a mass: $m \bar{\psi} \psi \rightarrow -em \cos(\varphi) \in \mathcal{L}$

$$\langle U_{\frac{2\pi}{3}}(x) \rangle = 1, e^{2\pi i/3}, e^{4\pi i/3}$$
 in the 3 distinct branches ('Universes'

Mass term lifts the degeneracy between universes

What is the fate of the false vacua?

The Fate of the False Vacuum

T = tension (energy per unit area in 4d)of domain wall (DW) between $\phi_1 \leftrightarrow \phi_2$

 $\Gamma \to 0$ as $T \to \infty$ with \mathcal{E} held fixed

Scalar Effective Potential

Turn on a mass: $m \bar{\psi} \psi \rightarrow -em \cos(\varphi) \in \mathcal{L}$

$$\langle U_{\frac{2\pi}{3}}(x) \rangle = 1, e^{2\pi i/3}, e^{4\pi i/3}$$
 in the 3 distinct branches ('Universes'

Mass term lifts the degeneracy between universes

What is the fate of the false vacua?

Breaking the 1-Form Symmetry

Add a charge-1 fermion with mass $M \gg m, e$

$$\iff$$
 bosonized scalar η with $V(\eta) = -M^2 \cos(\eta)$

Domain walls are sine-gordon kinks, $T \sim M$

DW = worldline of the heavy charge-1 fermion

Breaking the 1-Form Symmetry

Add a charge-1 fermion with mass $M\gg m,e$ \iff bosonized scalar η with $V(\eta)=-M^2\cos(\eta)$

$$\Gamma \sim \exp\left(-\frac{T^2}{\mathcal{E}}\right) \sim \exp\left(-\frac{M^2}{em}\right) \begin{tabular}{l} \leftarrow \line & \text{arbitrarily large 'UV' scale} \\ \leftarrow \line & \text{natural' scales of the theory} \\ \end{tabular}$$

Modifying the Instanton Sum in QCD

(Possible to restrict instanton number $Q_{
m top}$)

• $Q_{\rm top}=0$ without violating locality: couple to an **axion**

$$\mathcal{L} = \mathcal{L}_{\text{QCD}} + f^2 |\mathbf{d}\chi|^2 + \frac{i}{8\pi^2} \chi \operatorname{tr} F \wedge F$$

Integral over zero mode χ_0 gives delta function constraint: $Q_{\mathrm{top}} = 0$

▶ $Q_{\text{top}} \in p\mathbb{Z}$ without violating locality + without new propagating dof: couple to a **TQFT** (Seiberg '10; Tanizaki, Ünsal '19)

$$\mathcal{L} = \mathcal{L}_{\rm QCD} + i \, \chi \left(\frac{1}{8\pi^2} {\rm tr} F \wedge F - p \, \frac{1}{2\pi} dc^{(3)} \right) \qquad {}^{c^{(3)}= \text{ 3-form } U(1) \text{ gauge field: }} \int \frac{dc^{(3)}}{2\pi} \in \mathbb{Z}$$

- ▶ Local constraint: $\frac{1}{8\pi^2} \mathrm{tr} F \wedge F = \frac{p}{2\pi} dc^{(3)} \implies Q_{\mathrm{top}} = \frac{p}{2\pi} \int dc^{(3)} \in p \, \mathbb{Z}$
- ▶ Theta periodicity shorter $\theta \sim \theta + \frac{2\pi}{p}$, no change to $\mathcal{X}_{\mathrm{top}}$

Symmetries and Universes

$$\mathcal{L} = \frac{1}{2g^2} \text{tr} F \wedge \star F + \bar{\psi}_i (\not D + m) \psi_i + \frac{i\theta}{8\pi^2} \text{tr} F \wedge F + i \chi \left(\frac{1}{8\pi^2} \text{tr} F \wedge F - \frac{p}{2\pi} dc^{(3)} \right)$$

$$\mathbb{Z}^{(0)}_{2N_fp}$$
: $\psi_i \to e^{irac{2\pi}{2N_fp}\gamma_5}\psi_i$, $\chi \to \chi - rac{2\pi}{p}$, order parameters for $\mathbb{Z}^{(0)}_p$: $\det \bar{\psi}_i\psi_j$, $e^{i\chi}$

$$\left(\mathbb{Z}_p^{(3)} : e^{i \oint_{M_3} c^{(3)}} \to e^{2\pi i/p} e^{i \oint_{M_3} c^{(3)}} \right) \quad \left(U(1)^{(2)} : j^{(3)} = \star d\chi \right)$$

- ► EOM of $c^{(3)}: d\chi = 0 \implies \chi = \text{constant}$
- ▶ Sum over topological charges of $c^{(3)}$: $\chi = \frac{2\pi k}{p}$, $k = 0, 1, \dots, p-1$
- ▶ Path integral over χ : sum over k

 $\implies e^{i\chi}$ is a topological (constant) operator: it is the symmetry operator for $\mathbb{Z}_p^{(3)}$

Universes labelled by expectation values of $\langle e^{i\chi} \rangle = e^{i2\pi \mathbf{k}/p}$

Vacua

Assume that when N_f is not too large, massless QCD breaks continuous and discrete chiral symmetries:

Dynamical DWs are not possible: different $\langle e^{i\chi} \rangle \iff$ different universes

Probe DWs are possible after inserting volume operator $e^{i\int_{M_3}c^{(3)}}$

Eternal False Vacua

Add $m\, \bar{\psi}_i \psi_i$ to Lagrangian: breaks $\mathbb{Z}^{(0)}_{2N_fp} o \mathbb{Z}^{(0)}_2$ $SU(N_f)_A$ softly broken: unique vacuum

False vacua with $\mathcal{E} \sim m \, \Lambda_{\text{QCD}}^3$ are protected by $\mathbb{Z}_p^{(3)}$ symmetry

Near-Eternal False Vacua

Could break $\mathbb{Z}_p^{(3)}$ by including dynamical charged 2-branes or dynamical axion More natural to imagine that $\mathbb{Z}_p^{(3)}$ is emergent

$$i\chi \wedge \left(\frac{1}{8\pi^2} \text{tr} F \wedge F - \frac{p}{2\pi} dc^{(3)}\right)$$

Near-Eternal False Vacua

Could break $\mathbb{Z}_p^{(3)}$ by including dynamical charged 2-branes or dynamical axion More natural to imagine that $\mathbb{Z}_p^{(3)}$ is emergent

$$f^{2}|d\chi|^{2} + i\chi \wedge \frac{1}{8\pi^{2}} \operatorname{tr} F \wedge F + \mu^{4} (1 - \cos(p\chi)) \qquad \boxed{\mathbb{Z}_{p}^{(3)}}$$

$$\uparrow \qquad \qquad i\chi \wedge \left(\frac{1}{8\pi^{2}} \operatorname{tr} F \wedge F - \frac{p}{2\pi} dc^{(3)}\right) \qquad \boxed{\mathbb{Z}_{p}^{(3)}}$$

Near-Eternal False Vacua

Could break $\mathbb{Z}_p^{(3)}$ by including dynamical charged 2-branes or dynamical axion More natural to imagine that $\mathbb{Z}_p^{(3)}$ is emergent

$$(UV) \qquad f^2 |d\chi|^2 + i\chi \wedge \left(\frac{1}{8\pi^2} \mathrm{tr} F \wedge F - \frac{p}{8\pi^2} \, \mathrm{tr} G \wedge G\right) \qquad \underbrace{\mathbb{Z}_p^{(3)}}_{p}$$

$$f^2 |d\chi|^2 + i\chi \wedge \frac{1}{8\pi^2} \mathrm{tr} F \wedge F + \mu^4 (1 - \cos(p\chi)) \qquad \underbrace{\mathbb{Z}_p^{(3)}}_{p}$$

$$i\chi \wedge \left(\frac{1}{8\pi^2} \mathrm{tr} F \wedge F - \frac{p}{2\pi} dc^{(3)}\right) \qquad \underbrace{\mathbb{Z}_p^{(3)}}_{p}$$

$$(\Gamma \sim \exp\left(-\frac{(f\mu^2)^4}{(m\Lambda_{\mathrm{QCD}}^3)^3}\right) \qquad \text{UV scales}$$

$$\text{IR scales}$$

Higher groups arise when background gauge field for symmetry ${\cal A}$ cannot be introduced without a background field for symmetry ${\cal B}$

Should be able to turn on A backgrounds at all stages of an RG flow \Longrightarrow If A is unbroken then B must be unbroken shown for continuous higher groups in (Córdova, Dumitrescu, Intriligator '18)

Imagine turning on $U(1)_B=U(1)/\mathbb{Z}_N$ background field (which induces fractional topological charges) at different stages in the RG flow

$$i\chi_0 \int \left(\underbrace{\frac{1}{8\pi^2} \text{tr} F \wedge F}_{\in \frac{\mathbb{Z}}{N}} - \underbrace{\frac{p}{2\pi} dc^{(3)}}_{\in p\mathbb{Z}}\right)$$

Imagine turning on $U(1)_B=U(1)/\mathbb{Z}_N$ background field (which induces fractional topological charges) at different stages in the RG flow

$$i\chi_0 \int \left(\underbrace{\frac{1}{8\pi^2} \text{tr} F \wedge F}_{\in \frac{\mathbb{Z}}{N}} - \underbrace{\frac{p}{2\pi} dc^{(3)}}_{\in p\mathbb{Z}} + \underbrace{\frac{p}{2\pi} D^{(4)}}_{\in \frac{\mathbb{Z}}{N}}\right)$$

$$D^{(4)} = ext{(modified)} ext{ 4-form } \mathbb{Z}_p^{(3)} ext{ gauge field (Tanizaki, Ünsal '19)}$$

Imagine turning on $U(1)_B = U(1)/\mathbb{Z}_N$ background field (which induces fractional topological charges) at different stages in the RG flow

$$i\chi_0 \int \left(\underbrace{\frac{1}{8\pi^2} \operatorname{tr} F \wedge F}_{\in \frac{\mathbb{Z}}{N}} - \underbrace{\frac{p}{8\pi^2} \operatorname{tr} G \wedge G}_{\in p\mathbb{Z}} \right)$$

$$i\chi_0 \int \left(\underbrace{\frac{1}{8\pi^2} \operatorname{tr} F \wedge F}_{\in \frac{\mathbb{Z}}{N}} - \underbrace{\frac{p}{2\pi} dc^{(3)}}_{\in p\mathbb{Z}} + \underbrace{\frac{p}{2\pi} D^{(4)}}_{\in \frac{\mathbb{Z}}{N}} \right)$$

$$\mathbb{Z}_p^{(3)}$$

 $D^{(4)} = (\text{modified}) \text{ 4-form } \mathbb{Z}_p^{(3)} \text{ gauge field (Tanizaki, Ünsal '19)}$

Imagine turning on $U(1)_B = U(1)/\mathbb{Z}_N$ background field (which induces fractional topological charges) at different stages in the RG flow

$$i\int\chi\wedge\left(\underbrace{\frac{1}{8\pi^2}\mathrm{tr}F\wedge F}_{\in\frac{\mathbb{Z}}{N}}-\underbrace{\frac{p}{8\pi^2}\,\mathrm{tr}G\wedge G}_{\in\frac{\mathbb{Z}}{N}}+\underbrace{\frac{1}{2\pi}H^{(4)}}_{\in\frac{\mathbb{Z}}{N}}\right)$$

$$H^{(4)}=\text{ (modified) field strength of 3-form }U(1)^{(2)}\text{ gauge field }$$

$$H_{\text{Brennan, Cordova '20}}^{\text{Hidaka, Nitta, Yokokura '20}}$$

$$i\chi_0\int\left(\underbrace{\frac{1}{8\pi^2}\mathrm{tr}F\wedge F}_{\in\mathbb{Z}}-\underbrace{\frac{p}{2\pi}dc^{(3)}}_{\in\mathbb{Z}}+\underbrace{\frac{p}{2\pi}D^{(4)}}_{\mathbb{Z}}\right)$$

 $D^{(4)} = (\text{modified}) \text{ 4-form } \mathbb{Z}_p^{(3)} \text{ gauge field (Tanizaki, Ünsal '19)}$

23 / 24

Summary and Future Work

- lacktriangle Mixed 0-form (d-1)-form anomalies imply the absence of dynamical DWs
- ► Explicitly breaking 0-form symmetry —> eternal false vacua
- ▶ Lifetimes exponentially suppressed by ratio of UV to IR scales

(Open Questions)

- physical implications of the higher-group
 - how is the anomaly matched across RG scales?
- are there interesting non-invertible local topological operators that give rise to universes?
 - \blacktriangleright 2D YM decomposes: $Z=\sum_R d_R^{2-2g}e^{-c_RA}$ and has local, non-invertible topological operators (Nguyen, Tanizaki, Ünsal, '21)