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Decomposition

A two-dimensional theory with a finite global 1-form symmetry
decomposes into a disjoint union of theories which individually do
not have a 1-form symmetry.

Our motivating examples are two-dimensional gauge theories in
which the (finite) center acts trivially.
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One-form Symmetries

Two-dimensional pure gauge theories with gauge group G with
center Γ have a one-form symmetry BΓ.

BΓ acts by exchanging non-perturbative sectors.
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Decomposition for pure gauge theories

A pure gauge theory decomposes into a disjoint union of G/Γ
gauge theories with various discrete theta angles

T (G ) =
⊕
θ∈Γ̂

T (G/Γ)θ .
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The elliptic genus of a pure G gauge theory is the sum of elliptic
genera of pure G/Γ gauge theories with various discrete theta
angles.

The elliptic genera of G/Γ gauge theories vanish except for a single
discrete theta angle, for which the elliptic genus matches that of
the G gauge theory.

We will test decomposition by directly computing the elliptic genus
of pure G/Γ gauge theories.
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Principal G/Γ bundles

A principal G/Γ bundle on worldsheet T 2 admits a characteristic
class we shall denote w ∈ H2(T 2, Γ) ∼= Γ.

For example, for SO(k) bundles, w is the Stiefel-Whitney class w2.

Such theories admit analogues of theta angles, known as discrete
theta angles, in which the path integral is weighted by phases of
the form exp(iθ · w) for θ a (log of a) character of Γ, the set of
which we shall denote Γ̂.

Richard Eager Elliptic genera of pure gauge theories in two dimensions



Introduction Simply Connected G Strategy to compute elliptic genera Examples

Exchanging non-perturbative sectors

In the pure G gauge theory with center Γ, BΓ exchanges
non-perturbative sectors, taking G/Γ bundles with characteristic
classes w ∈ H2(T 2, Γ) ∼= Γ to bundles with characteristic class
u · w as follows. Cut out a small disk D from T 2 and glue it back
in with a transition function u ∈ π1(G/Γ).
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Decomposition is a stronger statement than just superselection.
For example, only in infinite volume does one get a selection rule
from superselection sectors, whereas decomposition holds at finite
volume. This distinction is discussed in greater detail in
arXiv:1912.01033 [Y. Tanizaki, M. Unsal].
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The fields

Pure N = (2, 2) supersymmetric G gauge theory has a vector
multiplet consisting of:

A gauge field Aµ,

Gauginos λ and λ̄,

Scalars σ, σ̄,

A real auxiliary scalar D.

The gauge field strength is a twisted chiral superfield Σ with
lowest component σ.
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The action

The Euclidean Yang-Mills Lagrangian LYM is

Tr
(
F 2

12+D2+Dµσ̄D
µσ+iD[σ, σ̄]−i λ̄γµDµλ−i λ̄P+[σ, λ]−i λ̄P−[σ̄, λ]

)
,

where

P± =
1± γ3

2
.
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The potential

The classical potential is proportional to

Tr
[
σ, σ†

]2
.

The classical vacua occur at the minimum of the potential and
satisfy [

σ, σ†
]

= 0.
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Equivalently, the classical Coulomb branch of vacua can be
described by the vacuum expectation values of the gauge invariant
polynomials in σ.

It is a classical result that this ring of functions is freely generated
by rank(G ) generators. However, the potential receives quantum
corrections, so the IR behavior is potentially more complex.
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Aharony et. al. proposed that for G semisimple and
simply-connected, the IR theory should be a free theory of twisted
chiral multiplets, Yi (Σ), i = 1, . . . , rank(G ), built out of the
generators of the invariant functions on Σ, with axial R-charges ri
given by twice the Casimir degrees1 di of G computed from and in
one-to-one correspondence with the possible Casimirs (of which
there are as many as the rank).

1This follows from the Harish-Chandra isomorphism that relates Casimirs to
symmetric invariants.
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The contribution of a single twisted chiral multiplet Y (Σ) with
axial R-charge r to the elliptic genus is

TrRR (−1)FqHLqHRyJ =
θ1(τ |(1− r/2)z)

θ1(τ | − (r/2)z)
,

where q = exp(2πiτ), y = exp(2πiz), J is the left-moving U(1)R
charge, and the genus is computed for periodic left-moving
fermions.
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Since the low energy theory is a theory of free twisted chiral
multiplets, the elliptic genus is expected to be∏

i

θ1(τ |(1− ri/2)z)

θ1(τ | − (ri/2)z)
.

For simply-connected G , this will be demonstrated by explicit
computation in [RE].
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Gauge group Dimension Casimir degrees

SU(n + 1)(An) (n + 1)2 − 1 2, 3, 4, · · · , n + 1
Spin(2n + 1)(Bn) n(2n + 1) 2, 4, 6, · · · , 2n

Sp(2n)(Cn) n(2n + 1) 2, 4, 6, · · · , 2n
Spin(2n)(Dn) n(2n − 1) n; 2, 4, 6, · · · , 2n − 2

G2 14 2, 6
F4 52 2, 6, 8, 12
E6 78 2, 5, 6, 8, 9, 12
E7 133 2, 6, 8, 10, 12, 14, 18
E8 248 2, 8, 12, 14, 18, 20, 24, 30

Casimir degrees for various gauge groups
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For example, the elliptic genus of a pure G2 gauge theory is
predicted to be

θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 5z)

θ1(τ | − 6z)
.
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Effective central charge

Identifying R-charges ri = 2di , we can apply the central charge
formula to see that

ceff

3
=

∑
i

(1− ri ) = −dimG ,

where ceff is an effective central charge.

It differs from the ordinary central charge as

ceff = c − 24hmin,

for hmin the smallest conformal dimension appearing in the theory,
as relevant to theories with continuous spectra.

We can get the same result from the modular transformation
properties.
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BG

A pure G -gauge theory can be thought of as a sigma model on the
stack BG = [point/G ], and this stack has dimension

dim [point/G ] = −dimG ,

matching ceff/3 above.
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The Lagrangian can be written in (2,2) superspace in the form

− 1

4g2

∫
d4θTrΣΣ+

(
−r + i

θ

2π

)∫
dθ+dθ

−
TrΣ|

θ−=θ
+

=0
+c .c .,

(2.1)
where Σ is a twisted chiral superfield encoding the gauge field
strength, r is a Fayet-Iliopoulos parameter, and θ the theta angle.
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In analyzing the low-energy behavior of such theories one often
works on the Coulomb branch, along which there is a twisted
one-loop effective superpotential which for a pure G/Γ gauge
theory with G simply-connected and Γ a subgroup of the center,
takes the form

Weff = −
∑
a

Σa

−ra + i
θa
2π

+
1

|Γ|
∑
µ̃

αa
µ̃

(
ln

(∑
b

Σbα
b
µ̃

)
− 1

) ,
(2.2)

where now ra and θa are the FI parameters and theta angles for
each of the unbroken U(1)’s on the Coulomb branch. (No further
corrections exist beyond one-loop order.)
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The first two terms are the (−r + iθ/2π)TrΣ of the classical
action along the Coulomb branch, and the last is a loop correction,
of the same form commonly seen in theories with matter, here
ultimately due to W bosons. The αa

µ̃ are the root vectors of the
nonzero roots (indexed by µ̃) of the Lie algebra of the gauge
group. The second term can be simplified, and written as

1

|Γ|
∑
µ̃

αa
µ̃

(
ln

(∑
b

Σbα
b
µ̃

)
− 1

)
=
∑
µ̃ pos′

iπ

|Γ|
αa
µ̃, (2.3)

giving what amounts to a gauge-group-dependent shift of the
theta angle. This was first observed by Hori–Romo. These
additional phases will play an important role in our computations
of elliptic genera of pure G/Γ gauge theories.
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The elliptic genus of a pure G/Γ-gauge theory reduces to a residue
integral over the moduli space M of flat G/Γ-connections on T 2

[F. Benini, R. E., K. Hori, Y. Tachikawa]. Principal G/Γ bundles
have a degree-two characteristic class, valued in Γ, which we shall
denote w ∈ H2(T 2, Γ) ∼= Γ, so the moduli space of flat G/Γ
connections is a disjoint union of moduli spaces

M =
⊔

w∈H2(T 2,Γ)

MG/Γ,w .
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In the sector of bundles with w = 0, any G/Γ bundle lifts to a G
bundle. Essentially as a result, the elliptic genus of a pure G gauge
theory matches that of a pure G/Γ gauge theory in the sector
w = 0, up to a volume factor 1/|Γ× Γ| and a Jacobian factor |Γ|2:

Z (G/Γ,w = 0) =
|Γ|
|Γ× Γ|

Z (G ) =
1

|Γ|
Z (G ).

2This arises from the different normalization of the root systems.
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Consider G/Γ gauge theory in a sector in which w 6= 0. To
describe such bundles, we pick two holonomies p, q around cycles
of the torus, which commute up to an element w ∈ Γ:

pq = wqp.

The matrices p and q are the holonomies of any bundle about two
cycles of the torus, lifted from G/Γ to G .

These almost-commuting holonomies are the result of lifting
commuties holonomies in G/Γ to pairs in G .
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Next, we simultaneously diagonalize the adjoint action of p and q
on the generators of the Lie algebra in the adjoint representation,
writing

pTαp−1 = ωαpT
α,

qTαq−1 = ωαqT
α,

where ωαp,q are phases, which enter into the elliptic genus
computation.
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These phases also appeared in the calculation of the
four-dimensional Witten index.

Note that such a diagonalization is not possible for every possible
representation in which the Tα may appear; in particular, for the
diagonalization above to be possible, one needs for the
representation to be acted upon nontrivially by the center detected
by p and q. Additionally the phases for the adjoint representation
are sufficient to determine the phases for all representations when
the center of G/Γ is trivial since the adjoint is a tensor generator
of the representation category [Deligne–Milne].

Richard Eager Elliptic genera of pure gauge theories in two dimensions



Introduction Simply Connected G Strategy to compute elliptic genera Examples

Representations for which such a diagonalization is
possible:

Let λ be a dominant weight and write λ =
∑l

i=1 ai$i for ai ∈ Z≥0.
Then the irreducible representation of Gsc with highest weight λ is
faithful precisely in the following cases:

Type Al (l ≥ 1): gcd(l + 1, a1 + 2a2 + · · ·+ lal) = 1.

Type Bl (l ≥ 2): al is odd.

Type Cl (l ≥ 2): a1 + a3 + a5 + · · · is odd.

Type Dl (l ≥ 4): l is odd and al−1 + al is odd

Type G2: always

Type F4: always

Type E6: a1 − a3 + a5 − a6 is not divisible by 3.

Type E7: a2 + a5 + a7 is odd

Type E8: always

(https://mathoverflow.net/questions/328138/non-faithful-
irreducible-representations-of-simple-lie-groups)
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Representations for which such a diagonalization not
possible:

Consider G = SU(2), Γ = Z2, with p and q in the 3 of SU(2). It is
easy to check that the resulting 3× 3 matrices expressing the Lie
algebra simply cannot be diagonalized with respect to nontrivial p
and q.
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If the phases ωp,q are different from one, then, those ‘directions’ in
the group are fixed. If they are equal to one, on the other hand,
then the group is unconstrained in those directions, and so one
must integrate over corresponding Wilson lines, over the
corresponding moduli space of flat connections, to get the elliptic
genus.
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Schweigert and Borel–Friedman–Morgan describe the moduli
spaces:

MG/Γ,w = MG̃(w),1

for some other group G̃ (w) that depends upon G/Γ and w , where
M denotes the moduli space of flat connections.
Roughly speaking, we can think of the groups G̃ (w) as being
obtained by folding the affine Dynkin diagram according to the
action of w ∈ Γ.
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G/Γ w G̃ (w)

An−1 ∼ SU(n)/Zn d SU(m), m = gcd(n, d)

Bn ∼ Spin(2n + 1)/Z2 1 Sp(2n − 2), Spin(2n − 1)

C2n ∼ Sp(4n)/Z2 1 Sp(2n), Spin(2n + 1)
C2n+1 ∼ Sp(4n + 2)/Z2 1 Sp(2n), Spin(2n + 1)

D2n+1 ∼ Spin(4n + 2)/Z4 1 Sp(2n − 2), Spin(2n − 1)
2 Sp(4n − 2), Spin(4n − 1)
3 Sp(2n − 2), Spin(2n − 1)

D2n ∼ Spin(4n)/Z2 × Z2 (1, 0) Sp(2n), Spin(2n + 1)
(0, 1) Sp(4n − 4), Spin(4n − 3)
(1, 1) Sp(2n), Spin(2n + 1)

E6/Z3 1 G2

2 G2

E7/Z2 1 F4

List of groups G̃ (w) whose moduli space of flat connections matches that
of a moduli space of flat G/Γ connections with nontrivial characteristic
class w ∈ H2(T 2, Γ).
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To describe the moduli spaces MG/Γ,w=0 more concretely, let T a
maximal torus of G/Γ 3 with corresponding Cartan subalgebra h.
Let Q be the root lattice, P be the weight lattice, and Λchar be the
character lattice of G/Γ. Similarly, let Q∨ be the coroot lattice,
P∨ be the coweight lattice, and Λ∨char be the co-character lattice.
Then the Cartan torus of G/Γ can be identified with h/2πΛ∨char .
The center of and fundamental groups of G/Γ are

Z (G/Γ) ∼= P∨/Λ∨char
∼= Λchar/Q,

π1(G/Γ) ∼= Λ∨char/Q
∨ ∼= P/Λchar .

3Not to be confused with the elliptic curve T 2.
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Let
M = hC/(Λ∨char + τΛ∨char ) ,

then the moduli space of flat G/Γ-connections on T 2 with w = 0 is

MG/Γ,w=0 = M/W ,

where W is the Weyl group of G/Γ.
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For G simply-connected the cocharacter lattice is equal to the
coroot lattice. In the opposite extreme of G/Γ with trivial center,
the cocharacter lattice is equal to the coweight lattice. The
relations between the cocharacter lattices mean that the moduli
space MG ,1 is an order |Γ× Γ| cover of MG/Γ,w=0.
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The elliptic genus of a pure G/Γ theory (with bundles of vanishing
characteristic class) is given by

ZT 2(τ, z ,w = 0) =
1

|W |
∑

u∗ ∈M∗sing

JK-Res
u=u∗

(
Q(u∗), η

)
Z1-loop(τ, z , u)

where |W | is the order of the Weyl-group of G .
The parameter q = e2πiτ in Z1-loop specifies the complex structure
of the torus T 2 and y = e2πiz is the fugacity for the left-moving
U(1) R-symmetry. The coordinates ua on the moduli space M can
equivalently be described by the coordinates xa = e2πiua .
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The contribution of a vector multiplet V with gauge group G/Γ to
Z1-loop for the w = 0 characteristic class is

ZV ,G/Γ(τ, z , u) =

(
2πη(q)3

θ1(q, y−1)

)rankG ∏
α∈G

θ1(q, xα)

θ1(q, y−1xα)

rankG∏
a=1

dua .

The product is over the roots α of the gauge group and η(q) is the
Dedekind eta function.

Richard Eager Elliptic genera of pure gauge theories in two dimensions



Introduction Simply Connected G Strategy to compute elliptic genera Examples

For bundles with non-trivial characteristic classes w , the
contribution to Z1-loop is modified. Using the eigenvalues ωαp,q, one
can then construct an elliptic genus for bundles of fixed
characteristic class w as a product of ratios

θ1(τ |vα)

θ1(τ | − z + vα)
,

for nonzero vα, where

vα = ln
ωαp
2πi

+ τ ln
ωαq
2πi

,

Richard Eager Elliptic genera of pure gauge theories in two dimensions



Introduction Simply Connected G Strategy to compute elliptic genera Examples

The residue integral takes the form

(
2πη(q)3

θ1(q, y−1)

)rank G̃(w) ∏
α∈G

θ1(τ |vα)

θ1(τ | − z + vα)

rank G̃(w)∏
a=1

dua .

for every vanishing v . The resulting residue integral is computed as
a Jeffrey-Kirwan residue over (a cover of) the moduli space of
those flat connections preserving the holonomy.
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Finally, we will combine them, to form the elliptic genus as a
function of the discrete theta angle. These different contributions
are each weighted with potentially two different phases. First,
there is a factor exp(iθ · w), where θ ∈ Γ̂ is a choice of discrete
theta angle. Second, there is a factor of the form exp(iw · t), where

ta = − πi
|Γ|

∑
µ̃ pos′

αa
µ̃, (3.1)

and w is encoded in wa so that

t · w =
∑
a

tawa. (3.2)

4

4Strictly speaking, the ta are not uniquely defined, as there are e.g. branch
cut ambiguities, but the phase factor above is well-defined, as discussed in
detail in [?]. Put another way, the ta encode a constant shift, due to quantum
corrections, to the discrete theta angle θ.
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Thus, if we label the contribution to the elliptic genus of a pure
G/Γ gauge theory in a sector with bundles of characteristic class w
by Z (G/Γ,w), then the elliptic genus for a general characteristic
class has the form

Z (G/Γ, θ) =
∑
w

exp(iw · θ) exp (iw · t)Z (G/Γ,w). (3.3)
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The elliptic genus of pure SU(2) gauge theory is

1

2

∑
u∗ ∈M+

sing

iη(q)3

θ1(τ | − z)

∮
u∗

du
θ1(τ |2u)

θ1(τ | − z + 2u)

θ1(τ | − 2u)

θ1(τ | − z − 2u)
,

where the contributing poles are located at

M+
sing =

{z
2
,
z + 1

2
,
z + τ

2
,
z + τ + 1

2

}
.
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Elliptic genera of pure SO(3) gauge theories were computed in
[Kim–Kim–Park] The authors argued that the pure SU(2) and the
SO(3)− theories have the same elliptic genus, given by

θ1(τ | − z)

θ1(τ | − 2z)
=

1

2

θ1(τ |+ 1/2)

θ1(τ | − z + 1/2)

θ1(τ |+ τ/2)

θ1(τ | − z + τ/2)

θ1(τ | − (1 + τ)/2)

θ1(τ | − z − (1 + τ)/2)
,

while the elliptic genus of the pure SO(3)+ theory vanishes
identically.
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This is consistent with the results of Gu et. al., which argued that
in pure SO(3) gauge theories, only for the nontrivial discrete theta
angle are there supersymmetric vacua, and supersymmetry is
broken in the IR in SO(3)+. It is also consistent with
decomposition [Hellerman et. al., Sharpe], which in this case can
be schematically expressed as

SU(2) = SO(3)+ + SO(3)−. (4.1)
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Gauge group Discrete theta angle for which susy unbroken

SU(k)/Zk −(1/2)k(k − 1) mod k
Spin(2k + 1)/Z2 1 mod 2

Spin(4k)/Z2 × Z2 k(2k − 1) mod 2, 0 mod 2
Spin(4k + 2)/Z4 2k(2k − 1) mod 4

Sp(2k)/Z2 (1/2)k(k + 1) mod 2
E6/Z3 0 mod 3
E7/Z2 1 mod 2

List of distinguished discrete theta angles for various
non-simply-connected gauge groups, for which a pure gauge theory
admits supersymmetric vacua, summarizing results from E. Sharpe, W.
Gu, E. Sharpe, H. Zou [arXiv:2005.10845]

.
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Thank you!
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