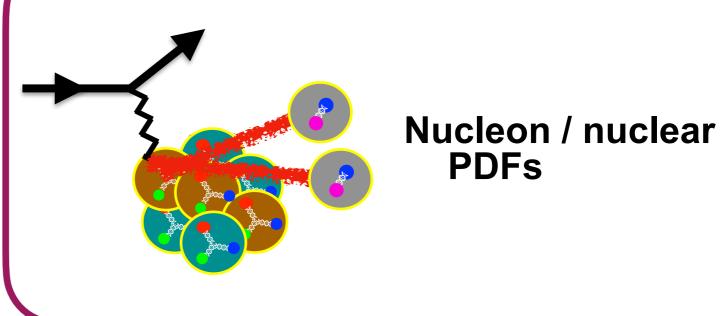
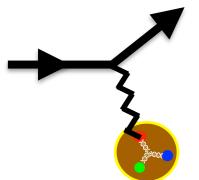
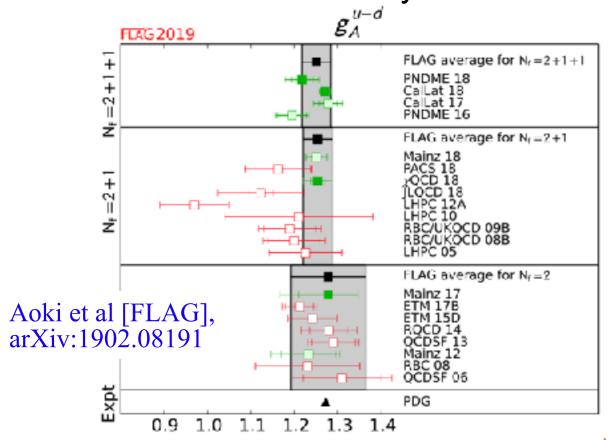

Lattice QCD and νA

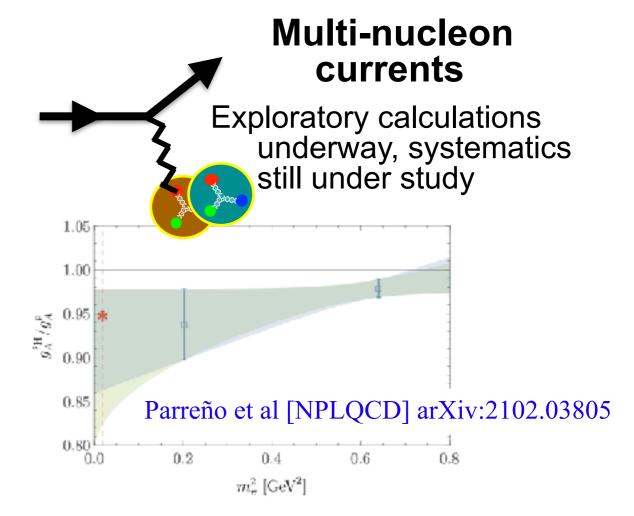

LQCD can provide accurate constraints on $\,\nu A\,$ cross sections at a wide range of energies with complementary strengths and weaknesses to experiment

See USQCD νA white paper: Kronfeld et al Eur. Phys. J. A 55 (2019)



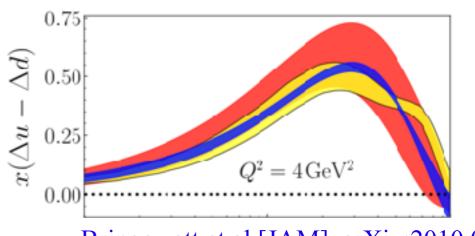


Lattice QCD possibilities



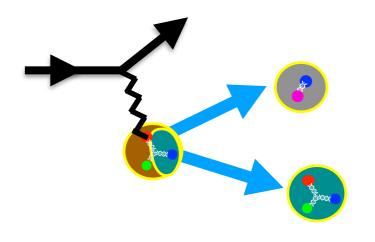
Elastic nucleon form factors

Complete QCD predictions of nucleon axial charge with percent-level uncertainties achieved by LQCD community



Form factor calculations more challenging due to Npi excited-state contamination, calculations have reached physical quark masses and are studying remaining systematics

Nucleon / nuclear PDFs


Global fits to lattice + experiment are increasing precision (especially isovector)

Bringewatt et al [JAM], arXiv:2010.00548

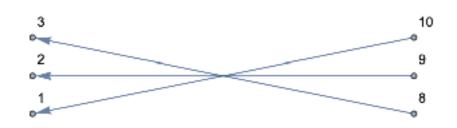
Lattice QCD possibilities

Resonant form factors

LQCD calculations of electroweak pion production amplitudes are possible (but hard)

Leinweber, Draper, Woloshyn PRD 48 (1993)

Alexandrou et al, PRD 77 (2008)


Formalism for relating calculable finite-volume matrix elements to physical amplitudes exists

Baroni, Briceño, Hansen, Ortega-Gama, PRD 100 (2018)

Review: Briceño, Dudek, Young, Rev. Mod. Phys. 90 (2018)

- QCD results can be used as inputs to tune nuclear many-body calculations
- requires cooperation betweenQCD + nuclear theory + event generators

Adding more nucleons to LQCD simulations is exponentially costly, adding more pions is not (but it can still get complicated)

Complementarity with experiment

Easy for LQCD

Hard for LQCD

Matrix elements of local operators with spacelike momenta

Flavor dependence (neutrons ~ protons)

Spin dependence (axial ~ vector)

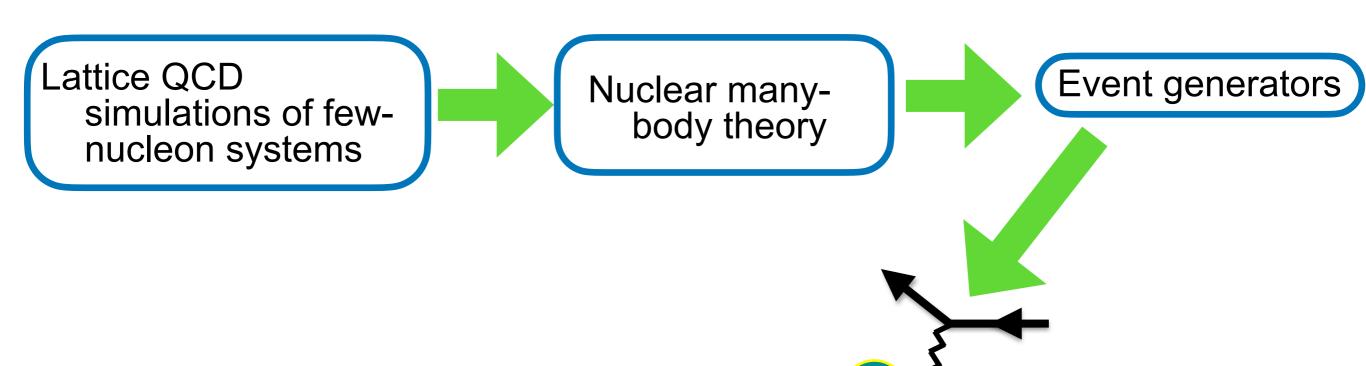
Pions

Real-time scattering amplitudes above multi-particle production thresholds

Large baryon number

LQCD can't predict high-energy nuclear x-secs on it's own

LQCD can provide inputs to nuclear models that complement experiment and validate models of transition between EFT and pQCD


From QCD to nuA

We need a theory pipeline from QCD to nuA x-sec with quantified uncertainties

We need clearly identified theory goals* if we want theory community to get organized (and apply for petascale / exascale computing resources...)

"nucleon axial and pseudoscalar form factors at 1 GeV with XYZ% uncertainty"

"deuteron axial current two-pion production amplitude at 1 GeV with ABC% uncertainty"

*difficult in particular because overly restrictive model spaces (e.g. dipole parameterizations) can obscure size of theory uncertainties

From QCD to nuA

We need a theory pipeline from QCD to nuA x-sec with quantified uncertainties

We need clearly identified theory goals if we want theory community to get organized (and apply for petascale / exascale computing resources...)

"nucleon axial and pseudoscalar form factors at 1 GeV with XYZ% uncertainty"

"deuteron axial current two-pion production amplitude at 1 GeV with ABC% uncertainty"

Event Generators for Accelerator-Based Neutrino

Experiments

Contact Information:

Joshua Isaacson (Theoretical Physics Department, Fermilab) [isaacson@fnal.gov]
William I. Jay (Theoretical Physics Department, Fermilab) [wjay@fnal.gov]
Alessandro Lovato (INFN-TIFPA, Trento, Italy; Physics Division, Argonne National Lab) [levato@anl.gov]

Pedro A. N. Machado (Theoretical Physics Deportment Executable Incomplete Action 1 and

Noemi Rocco (Theoretical Physics Departm [procco@anl.gov] Snowmass 2021 LoI: Nucleon Form Factors for Neutrino Physics

Taku Izubuchi, a,b Christoph Lehner, a,c Aaron S. Meyer, a* Shigemi Ohtab,d,c, Sergey Syritsynb,f

QCD theorists want to help

Lattice-QCD Calculations Supporting Neutrino-Oscillation Experiments

Fermilab Lattice and MILC Collaborations

Ineoretical predictions of Neutrino-nucleus Interactions

Contact Information:

Rajan Gupta (Los Alamos National Laboratory) [rajan@lanl.gov]:
Stefano Gandolfi (Los Alamos National Laboratory) [stefano@lanl.gov]:

Connecting QCD to neutrino-nucleus scattering

Joseph Carlson¹, Chia Cheng Chang (張家丞)^{2,3,4}, William Detmold⁵, Joshua Isaacson⁶, William Jay⁶, Gurtej Kanwar⁵, Andreas Kronfeld⁶, Huey-Wen Lin⁷, Yin Lin (林胤)^{6,8}, Keh-Fei Liu³, Alessandro Lovato^{10,11}, Pedro Machado⁶, Aaron S. Meyer¹², Saori Pastore¹³, Noemi Rocco^{6,10}, Phiala Shanahan⁵, and Michael Wagman⁶

Lattice Calculation of Neutrino-Nucleon Cross Section

Keb-Fei Liu¹ (liu@g.uky.edu), Terrence Draper¹, Jian Liang¹, G. Wang¹, Yi-Bo Yang², and Yong Zhao³