Planning for a Common Generator Toolchain

float nudir[3]; //In Neutrino nu-nucl scattering 2021/3/15

Luke Pickering For the Generator Tools Effort

Disclaimer: I am a T2K and DUNE collaborator.

I also work on NUISANCE which interfaces to NEUT/GENIE/NuWro/(GiBUU).

I maintain/develop NEUT for T2K analysis needs.

L. Pickering 3

This Talk

- Anatomy of a Neutrino Interaction Simulation
- What tools are on the Market?
- Considerations
 - Flux/Geometry
 - Formats
 - Toolchain factorisation
- Plans for the Future

We need simulated neutrino interactions to e.g.:

- Study analysis sensitivities
- Study event selections
- Error propagation
- Perform Analyses

Goals of This Effort

- We want to develop tools to facilitate collaboration with theorists developing new interaction models
- Lower the barrier for using current and future interaction models in analyses across the community
 - de facto experimental usage of a single set of tools (and thus models)
 - Aim to make more tools and models accessible to analysers
- Improve plug-and-play-ability of factorisable simulation components
 - Collider tools have a definite leg-up on us here

MC 'Events'!

Anatomy of a Neutrino Interaction Simulation ⁶

Neutrino Sources

MC 'Events'!

L. Pickering 7

It all starts with a neutrino...

Anatomy of a Neutrino Interaction Simulation⁸

MC 'Events'!

Neutrino Life-cycle

- Neutrino (species, 4-momentum) sampled from a source
- Neutrino ray is then stepped through a geometry (volumes of materials)
- Need to ask an interaction model for the probability of interaction.

Neutrino Life-cycle

- Neutrino (species, 4-momentum) sampled from a source
- Neutrino ray is then stepped through a geometry (volumes of materials)
- Need to **ask an interaction model** for the probability of interaction.

Neutrino Life-cycle

- Neutrino (species, 4-momentum) sampled from a source
- Neutrino ray is then stepped through a geometry (volumes of materials)
- Need to ask an interaction model for the probability of interaction.
- Choose whether to interact in a step
- If interact, simulate interaction kinematics!
- Simulate intranuclear cascade (Final State Interactions, or FSI)

FSI)

Downstream ECAL Solenoia Coil

Barrel ECAL

UA1 Magnet Yoke

P0D ECAL

Neutrino Life-cycle

- Neutrino (species, 4-momentum) sampled from a source
- Neutrino ray is then stepped through a geometry (volumes of materials)
- Need to ask an interaction model for the probability of interaction.
- Choose whether to interact in a sten
- If interact This bit is often called a 'Flux/Geometry Driver(?)' Simulate Not a particularly clear or descriptive name

I will call it a **nuint-placer**!

L. Pickering 19

What Tools are Used by Experiments

GENIE:

- Bespoke tools for many neutrino sources (FNAL & J-PARC beams, Atmospheric, ...)
- Many, configurable interaction model components
- Includes systematic
 uncertainty tools

NEUT:

- de facto J-PARC-based experiment tool (T2K/SK)
- A number of interchangeable model components
- Includes systematic uncertainty tools

NuWro:

- Can simulate interactions with ROOT-based geometry
- Used for alternate model studies on T2K (and MicroBooNE).
- Includes systematic uncertainty tools

What Tools are Used by Experiments

GENIE:

- Bespoke tools for many neutrino sources (FNAL & J-PARC beams, Atmospheric, ...)
- Many, configurable interaction model components
- Includes systematic uncertainty tools

NEUT:

- de facto J-PARC-based experiment tool (T2K/SK)
- A number of interchangeable model components
- Includes systematic uncertainty tools

NuWro:

- Can simulate interactions with ROOT-based geometry
- Used for alternate model studies on T2K (and MicroBooNE).
- Includes systematic uncertainty tools

- We do not want to write a new generator.
- We want to be bring their solutions to the Hardtm bits to a wider audience by building a robust, community solution to the less hard bits.
- This will also make the work of other model-building groups more accessible to current and future neutrino scattering experiments.

Vision For A Community Toolchain

- Specification and implementation of a *nuint-placer*.
- Specification and implementation of a common event format
- Specification for factorising hadronic cascade from hard-scatter
- Well defined and supported interface for integration to experimental simulations:

L. Pickering

- Neutrino source and detector geometry descriptions
- To be successful, requires feedback/buy-in from experiments
- Formats that work for input-providers and output-consumers
- Provide a flexible interface for theory calculations to hook into
 - To be successful, requires buy-in from theory groups
- Factorise what can be factorised:
 - Small dedicated tools, with well defined interfaces are generally more maintainable and integrable to other software than monolithic solution.

L. Pickering 22 General Considerations For Community Tools

General Considerations For Community Tools

- Development language? Additional language bindings?
 - Obvious choice is C++, is it the only reasonable choice? **rust**? **go**?
 - FORTRAN interfaces? Would Python bindings be useful?
- ROOT dependence?
 - Probably need **R00T** for the geometry description: do not want to expand project scope to include custom geometry description and traversal.
 - ROOT I/O is also useful, but would like to be format-flexible.
- Validation:
 - These tools usually treated like black-boxes by everyone except their authors.
 - But they are absolutely relied upon by every aspect of an experimental analysis.
 - A key part of this new effort would be a validation suite, critically including some *a priori* validations:
 - it is not good enough to ask 'does it reproduced GENIE/NEUT for the same xsec?'

Summary of Formats and Inputs/Outputs

Neutrino Source Formats:

- JNuBeam
- BNB
- NuMI
- dk2nu

. . .

- Histogram
- Atmospheric model

Detector Geometry Description:

- ROOT binary
- GEANT4 in-memory
- gdml

Neutrino Interaction Models:

- ASCII/binary tables
- Full calculation code
- For more Info see Minerba's Talk

Interaction event formats:

- Each generator uses 'proprietary' ROOT
 - TTree binary formats
- Some also have ASCII output

Flux/Geometry Considerations

- Supporting multiple formats for each of:
 - Neutrinos sources
 - Geometries
- Interfaces to models:
 - Need to request:
 - double total_xsec(neutrino_species, energy, target_nucleus)
 - event generate_event(neutrino_species, energy, target_nucleus)
 - Methods of interfacing
 - Directly linking to a defined API?
 - Other interprocess communications (named pipes, networking, MCAAS...)
- Where can we make use of existing work?
 - Separate and generalise **neutgeom**?
 - Implement all models as GENIE channels and make use of the GENIE nuint-placer?

Factorisation Considerations

- Factorisation in generator design can mean different things to different people:
 - Separating initial state nuclear model effects from the hard scatter (i.e. reducing dimensionality of integrals)
 - Separating hadronic cascade from the hard scatter
 - Separating the flux/geometry navigation from the interaction model

Factorisation Considerations

- Factorisation in generator design can mean different things to different people:
 - Separating initial state nuclear model effects from the hard scatter (i.e. reducing dimensionality of integrals)
 - Separating hadronic cascade from the hard scatter
 - Separating the flux/geometry navigation from the interaction model

Cascade Factorisation

- Factorisation of the hadronic intranuclear cascade is near-universally implemented.
 - It is not the correct thing to do in general, but it is an incredibly useful tool
- Given that it is factorised, it would useful to mix and match hard-scatter and cascade implementations.
- We plan to define an interface for separating the cascade simulation from the hard-scatter in existing generator(s)
 - GiBUU can already be run in such a mode!
- This work is closely related to/facilitated by adopting common event formats.

Common Event Format Considerations

- On-disk format?
 - ROOT? ASCII? HDF5?
- What should be defined by the format?
 - e.g. 'Interaction modes'? (The answer here is pretty emphatically '**no**')
- Disruption caused by a new format:
 - Should generators use it as their main output format? Or do we also provide converters?
 - Generators must be able to store enough generator-specific event information to enable systematic error propagation tools (which will not generalise).
- Maintainability:
 - Better to not 'start from scratch' if possible
 - Can we build what we need on top of a standard solution?

NuHepMC

- An example starting point designed as a set of conventions built on top of HepMC3 can be found <u>here</u>.
- It is built from two parts:
 - <u>Specification</u> that defines the neutrino-MC-specific conventions and allowed extensibility in terms of HepMC3 objects/interfaces.
 - A C++ helper library to facilitate reading/writing of HepMC3 events that respect with the spec.
- Reference implementations have been added to forks of NEUT and NUISANCE and are available for testing.
- This is not meant to be the complete solution, but a starting point for discussion and evolution.

Stretch Goal: Truth Analysis Tools

- Interaction systematic uncertainties are becoming more and more limiting to our experimental precision.
 - Tools such as GENIE-Professor, Apprentice, NUISANCE, NOvARwgt, T2KRwgt and their descendants are critical for current and next generation neutrino experiments.
- Providing 'truth analysis' tools alongside a common interaction event format will aid in the development of such tools against a common format.
 - e.g. double GetQ2(event const &, units)
 - e.g. particle GetHighestMomProton(event const &, units)
 - Such a toolkit could also include experimental contributions such as: double MINERvA2020dpt_y(event const &, units)
- This would come as a secondary, optional package dependent on the event format.

Planned Work

- Document the above considerations and plans to address them.
 If you are interested, there is room for the current WG to grow, so get in touch!
- Solicit feedback and criticism from the community.
 - We want to hear as much input as possible from analysers, experts, and model-builders before committing to anything that we have designed in a small group.
- We will then draft technical specifications where relevant:
 - Total cross-section API for model/interaction-placer interface.
 - Common Event format
 - Validation suite
- Then we get to begin implementation.
- We still have time to do this work carefully before DUNE and HK
 - We have to start soon
 - Also expect to reap the benefits on current generation experiments and FNAL SBL too!

Summary

- We are looking to solve the 'easy' simulation problems very well.
 - Solve them in a way that is easily integrable into all experimental code
 - Solve them in a way where the focus is on ease of collaboration with the people working on the difficult problems.
- But to do it well is a considerable amount of work.
 - We need interest and buy-in from this community
- Buy-in in terms of:
 - Contributed specification requirements
 - Contributed development time
 - Willingness to use the tools as they become available
 - Willingness to develop models against a community agreed-upon interface
 - (But I am of the opinion this interface should be 'living' and should grow as needs change)

Dawn from the summit of Fuji-san

Thanks for listening

