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WAGASCI / Baby MIND experiment

Current Physics goal

Aim to measure the double differential cross-section on CCOmnOp
samples at ~10% precision for each bin with the H20 and CH
target

R NINJA
Wall MRD

Reduce the systematic error on cross-section on the far detector
by a better understanding of neutrino interaction models.

Target Detectors

2 X WAGASCI el A

_ ) Proton Module WAGASCI
e interaction target : H,0 (80%) + CH (20%) WAGASCI detectors

« directly detectable particles: 4, X, p, €

Proton Module
e interaction target : CH (100%)
« directly detectable particles: 4, X, p, €

Muon range detectors

2 x Wall MRD (iron + scintillator) Y
« directly detectable particles : mainly u -

e can measure momentum by energy loss

Baby MIND (magnetized iron + scintillators) Top view
« directly detectable particles : mainly p
¢ can measure momentum by energy loss and curvature IWAGASCI IWaII MRDs

» is capable of particle change identification

|Proton Module | | Baby MIND
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WAGASCI / Baby MIND experiment
| CurentND280 | wAGAsC

The ND280 FGD?2 target is half carbon, half
water while the SK target is pure water

(Water:CH ~ 50:50)

ND280 has limited sensitivity to side and

backwards escaping muons

It is a big detector so the individual
contribution is very specialized and can be

“lost/not recognizable”
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The WAGASCI target is prevalently water
(Water:CH ~ 80:20)

WAGASCI has good sensitivity to side-
going muons thanks to the two SideMRDs

It is a relatively small detector so the
individial contribution is huge and
immediately recognizable

Because ND280 and WAGASCI are at a
different off axis angle, they see two
different beam profiles (with different
peak energy).

It should be possible, by doing a WAGASCI-
ND280 joint analysis, to gain access to a
more restricted range of neutrino energies.




Agenda

We are aiming at a measurement of doubly-differential (angle and energy) cross-section of p-neutrino on

water and hydrocarbon and their ratio.
The topology of interest is : CC Ox Op (only a lepton in the visible final state)
The details of the cross section measurement are not yet finalized.

The detector performance evaluation and track reconstruction is almost complete and is the main topic of this

presentation.

Due to time constraint | am just focusing on the topics that | personally contributed to. | am leaving out of

the presentation the following studies:

¢ Momentum and angle reconstruction in BabyMIND (Charlie Ruggles)

(" )

+100 points
to anyone
who can
recognize this
character

\

o Detector performance of Proton Module and BabyMIND (Yasutome Kenji)

« Detector performance of WallIMRD (Takuya Kobata and Yasutome Keniji)
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[ Track seeding : evaluation of two algorithms is ongoing ]

Cellular Automaton

 Easy to implement and tune
« Based on algorithm used for INGRID

* Need to make assumptions on
eometry, by using a huge set of
iIf/else statements

Do not make use the charge information

. Sirtnple noise suppression by threshold
cu

e Current default (parameter tuning is
complete)
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Steps : 1 2 3 4 5

example of CAT algorithm connecting hits inside the INGRID detector
(the plane structure and the upstream-downstream direction is an
assumption of the algorithm)

Minimum Spanning Tree

» Implemented using the ND280 SFGD
library (Jarnik-Prim-Dijkstra algorithm)

 Advanced noise suppression using

DBSCAN algorithm

« No assumption made on geometry
(only hit position is used?

* Use the charge information for seeding
 Experimental (parameter tuning is

ongoing)
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example of MST connecting the
vertices of a graph.

Example of DBSCAN algorithm separating
hit clusters (blue and red) from noise (grey)




What is a Minimum Spanning Tree?

 In layman’s terms, it is a way of connecting vertices of a graph together so that
the sum of the distance between the vertices is minimal.

* In graph theory, the connections between vertices are usually called edges.

e The distance function can be arbitrarily defined and is usually called weight.

Granh th | e vertices = hits
rapht s edges — connections
Particle Physics slang | * Wweight — euclidean distance (can be weighted by the energy deposit)
translation « MST - set of clusters candidates

Example of minimum spanning tree:
 The vertices are the circles

 The edges are the lines

« The weights are the numbers

« The MST is the set of the bold lines

Travelling salesman problem
(Visit all cities covering the least distance)
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Reconstruction efficiency
and parameter tuning

] 2D detector | track hit | noise hit true particle | reconstructed

clean and

A reconstructed cluster A is said to be a complete

match for a true cluster B if the following
two conditions are satisfied:

1. Completeness condition : the 80% of
hits of the cluster B belongs to the
cluster A

clean but not

complete
2. Cleanliness condition : 80% of the
hits of cluster A belongs to the cluster B
complete
The reconstruction efficiency is defined as: bIUt not
clean

# reconstructed clusters
€ =
# true clusters

not clean and
not complete

3/17/2021 8



Reconstruction efficiency and parameter tuning

A reconstructed cluster A is said to be a
match for a true cluster B if the following
two conditions are satisfied:

1. Completeness condition : the 80% of
hits of the cluster B belongs to the
cluster A

2. Cleanliness condition : 80% of the
hits of cluster A belongs to the cluster B

The reconstruction efficiency is defined as:

# reconstructed clusters
# true clusters

€ =

3/17/2021
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Each parameter of the track seeding algorithm is tuned
by selecting the maximum of the reconstruction efficiency.
The absolute efficiency depends on the sample and the

efficiency definition and is not very significant per se.

top efficiency

0.35

0.34

efficiency
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threshold

example of arbitrary parameter of CAT algorithm tuned
using the definition on the left. Plot by Takayasu-san. 9




Light collection response

S : scintillation efficiency (included in M)

JdE k g : Birk’s constant (0.0208 + 0.0023 cm/MeV)

dL. = S———MM d E : infinitesimal energy deposit

1+ RBZ_E d L : infinitesimal light yield

dE/dx : energy loss

Assumptions :

* The scintillator bars are so thin that the energy loss
inside them is almost constant

» The scintillator efficiency factor is not directly measured and
is included in the M factor (see the MPPC response)
Monte Carlo
simulation of
the detector

Fiber response response MPPC response
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FIG. 5: The attenuation length of Y11 fiber vs wavelength.




Side view : hit efficiency

=y
—

Hit efficiency of WAGASCI detector | |
using the MST track seeding algorithm | = R
S astusasa Rt
1. Reconstruction : select only sand- °%L TEH?
muons-like tracks ool
2. Mask the target plane (for example 4th P
plane) Top view : hit efficiency e
3. Only select tracks having hits in g  oryebat
neighbouring planes (ng) g o8 A
ath 4. Check if the masked plane has an hit or
No not (n4) 1 :w

efficiency =n_1 o

0.9

The agreement of MC and real data is around 3%. | think that by tuning the MC and

improving the track seeding algorithm we can reach a better agreement.

_ i

0.85 |
1 1 l 1 |
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Light yield in WAGASCI detector

* Light yield is evaluated using sand-
muon tracks

The electronics response has not been
Implemented yet because we need to

perform a test bench of the electronics.
A characterization of the SPIROC2D chip was already
done * by the developers but we need to do it again
using the same configuration used for the Physics data
taking.

The calibration of WAGASCI is far from
perfect, that could also explain the
discrepancy in the light yield of MC and
real data.

3/17/2021 Pintaudi Giorgio

number of events

number of events

Light yield - WAGASCI downstream - WAGASCI plane-type scintillator
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Light yield - WAGASCI downstream - WAGASCI grid-type scintillator
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Phys data : (12.4 +- 13.5) PEU

MC data : {19.5 +- 10.5) PEU
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Conclusion and plans for the near future

Track reconstruction :
» need to improve the tuning of the algorithm parameters of the MST algorithm
* need to evaluate which is the best algorithm for each subdetector

MC simulation of detector response :
* need to implement the electronics response
» need to further tune the detector response parameters for the WAGASCI detector

Detector evaluation:
» need to evaluate the track matching efficiency between WAGASCI and WallMRD / BabyMIND
» need to evaluate the reconstructed vertex position for WAGASCI
* need to evaluate momentum and angle reconstruction efficieciency of tracks originating from the
WAGASCI detector
Before the cross-section measurement :
* need to finalize what is the topology of the signal
* need to define the phase-space for the xsec measurement
* need to define event selection criteria

3/17/2021 Pintaudi Giorgio
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volume ratio

Angular acceptance

Individual
contribution

WAGASCI / Baby MIND experiment
| CurentND280 | wAGAsC

The ND280 FGD2 target is half carbon, half The WAGASCI target is prevalently water
water while the SK target is pure water (Water:CH ~ 80:20)

(Water:CH ~ 50:50)

ND280 has limited sensitivity to side and WAGASCI has good sensitivity to side-

backwards escaping muons

It is a big detector so the individual

going muons thanks to the two SideMRDs

It is a relatively small detector so the

contribution is very specialized and can be individial contribution is huge and

“lost/not recognizable”

immediately recognizable
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Because ND280 and WAGASCI are at a different off
axis angle, they see two different beam profiles (with
different peak energy). It is possible, by doing a joint
analysis, gain access to a more restricted range of
neutrino energies.
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[ Scurve calibration of WAGASCI and WallMRD detectors ]

Dif4_Chip13_Channel0_InputDAC121 Optimized_Threshold_IDACH1

—_ ) L.
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The threshold DAC is the threshold adjustment DAC. Red: 0.5 PEU Optimized threshold
Because of a design flaw in the ASIC the threshold is Blue: 1.5 PEU Optimized threshold
applied on the undershoot of the signal. That is why Green: 2.5 PEU Optimized threshold

the X axis of the plots is reversed.
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WAGASCI

e 4n full angular acceptance

* Main target is 500kg of water
(passive target)

 Readout system: scintillator,
WLS fiber, MPPC

e Grid-like structure

Proton Module

« forward acceptance

« fully active scintillator target
(556 kg CH)

» Readout system: scintillator,
WLS fiber, MPPC
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Target detectors

Focus of today’s presentation
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scintillators

Water tank
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WallIMRD

1800 mm

~4000 mm

3/17/2021

Baby MIND

Muon range detectors

Wall MRD

Sandwich-structure of iron planes and Baby MIND magnetic field front view

scintillator tracking planes 10 _

B=15T

Readout system: scintillator, WLS fibel ] % )

v

MPPC
Detect side going muons

B=-15T

15

0.0

Steel plate height [m]
-~

> N
Measure momentum by range G %

w

03 ]
Baby MIND B e I B
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Steel plate length [m]

Iron-core magnet modules and
scintillator tracking planes

Readout system: scintillator, WLS fiber, Baby MIND magnetic field side view

Detect forward going muons

Measure momentum by range and
curvature

Non uniform magnetic field to
keep particles inside tracking
region
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