Towards the measurement of neutrino cross section on water in the 1 GeV region using the WAGASCI detector of the T2K experiment.

Giorgio Pintaudi, PhD student
Yokohama National University
On behalf of the T2K collaboration
WAGASCI / Baby MIND experiment

Current Physics goal

Aim to measure the double differential cross-section on CC0π0p samples at ~10% precision for each bin with the H2O and CH target

Reduce the systematic error on cross-section on the far detector by a better understanding of neutrino interaction models.

Target Detectors

2 X WAGASCI
- Interaction target: \(\text{H}_2\text{O} (80\%) + \text{CH} (20\%) \)
- Directly detectable particles: \(\mu, \pi^\pm, p, e \)

Proton Module
- Interaction target: CH (100%)
- Directly detectable particles: \(\mu, \pi^\pm, p, e \)

Muon range detectors

2 x Wall MRD (iron + scintillator)
- Directly detectable particles: mainly \(\mu \)
- Can measure momentum by energy loss

Baby MIND (magnetized iron + scintillators)
- Directly detectable particles: mainly \(\mu \)
- Can measure momentum by energy loss and curvature
- Is capable of particle change identification
WAGASCI / Baby MIND experiment

<table>
<thead>
<tr>
<th></th>
<th>Current ND280</th>
<th>WAGASCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume ratio</td>
<td>The ND280 FGD2 target is half carbon, half water while the SK target is pure water (Water:CH ~ 50:50)</td>
<td>The WAGASCI target is prevalently water (Water:CH ~ 80:20)</td>
</tr>
<tr>
<td>Angular acceptance</td>
<td>ND280 has limited sensitivity to side and backwards escaping muons</td>
<td>WAGASCI has good sensitivity to side-going muons thanks to the two SideMRDs</td>
</tr>
<tr>
<td>Individual contribution</td>
<td>It is a big detector so the individual contribution is very specialized and can be “lost/not recognizable”</td>
<td>It is a relatively small detector so the individual contribution is huge and immediately recognizable</td>
</tr>
</tbody>
</table>

Because ND280 and WAGASCI are at a different off axis angle, they see two **different beam profiles** (with different peak energy).

It should be possible, by doing a WAGASCI-ND280 **joint analysis**, to gain access to a more restricted range of neutrino energies.
We are aiming at a measurement of **doubly-differential (angle and energy) cross-section of μ-neutrino on water and hydrocarbon and their ratio.**

The topology of interest is: CC $0\pi 0p$ (only a lepton in the visible final state)

The details of the cross section measurement are not yet finalized.

The **detector performance evaluation** and track reconstruction is almost complete and is the main topic of this presentation.

Due to time constraint I am just focusing on the topics that I personally contributed to. I am leaving out of the presentation the following studies:

- Momentum and angle reconstruction in BabyMIND (Charlie Ruggles)
- Detector performance of Proton Module and BabyMIND (Yasutome Kenji)
- Detector performance of WallMRD (Takuya Kobata and Yasutome Kenji)
Threshold at 1.5 PEU

Threshold at 2.5 PEU

Gain history for WAGASCI upstream top

Temperature (Celsius Degrees)

Gain (ADC counts)

No calibration Threshold at 2.5 PEU

Target gain of 50 ADC counts

Calibration is not optimal
Cellular Automaton
- Easy to implement and tune
- Based on algorithm used for INGRID
- **Need to make assumptions on geometry, by using a huge set of if/else statements**
- Do not make use the charge information
- Simple noise suppression by threshold cut
- **Current default** (parameter tuning is complete)

Minimum Spanning Tree
- Implemented using the ND280 SFGD library (Jarnik-Prim-Dijkstra algorithm)
- Advanced noise suppression using DBSCAN algorithm
- **No assumption made on geometry (only hit position is used)**
- Use the charge information for seeding
- **Experimental** (parameter tuning is ongoing)

Example of CAT algorithm connecting hits inside the INGRID detector (the plane structure and the upstream-downstream direction is an assumption of the algorithm)

Example of MST connecting the vertices of a graph.

Example of DBSCAN algorithm separating hit clusters (blue and red) from noise (grey)
In layman’s terms, it is a way of connecting vertices of a graph together so that the sum of the distance between the vertices is minimal.

In graph theory, the connections between vertices are usually called edges.

The distance function can be arbitrarily defined and is usually called weight.

Example of minimum spanning tree:
- The vertices are the circles
- The edges are the lines
- The weights are the numbers
- **The MST is the set of the bold lines**
A reconstructed cluster A is said to be a match for a true cluster B if the following two conditions are satisfied:

1. **Completeness condition**: the 80% of hits of the cluster B belongs to the cluster A.
2. **Cleanliness condition**: 80% of the hits of cluster A belongs to the cluster B.

The reconstruction efficiency is defined as:

$$
\varepsilon = \frac{\# \text{reconstructed clusters}}{\# \text{true clusters}}
$$
A reconstructed cluster A is said to be a match for a true cluster B if the following two conditions are satisfied:

1. **Completeness condition**: the 80% of hits of the cluster B belongs to the cluster A

2. **Cleanliness condition**: 80% of the hits of cluster A belongs to the cluster B

The reconstruction efficiency is defined as:

\[\varepsilon = \frac{\# \text{ reconstructed clusters}}{\# \text{ true clusters}} \]

Each parameter of the track seeding algorithm is tuned by selecting the maximum of the reconstruction efficiency. The absolute efficiency depends on the sample and the efficiency definition and is not very significant per se.
Scintillator response

\[dL = S \frac{dE}{1 + k_B \frac{dE}{dx}} \]

Assumptions:

- The scintillator bars are so thin that the energy loss inside them is almost constant
- The scintillator efficiency factor is not directly measured and is included in the M factor (see the MPPC response)

Light collection response

Modeled as **simple exponential loss**: because the distance between the fiber and the hit point is at max a few centimeters we assume a simple exponential loss for the collected photons.

\[L* = L_0 e^{-\frac{x}{\lambda}} \]

This correction factor is due to the not perfect collection of all the photons produced by the particle in the scintillator by the wavelength shifting fiber, due to geometrical acceptance, fiber

Fiber response

Modeled as **simple exponential loss**: because the length of the fiber is about 1m and is relatively smaller than the attenuation length, the assumption of monochromatic source of about 500 nm (green) should hold.

\[L_\lambda = L_* e^{-\frac{x}{\lambda}} \]

MPPC response

Many corrections are applied to the light yield in sequence:

1. **Light yield (MeV) to PE (Photo-electrons) conversion** (tuned with MC)
\[PE_0 = M \cdot L_0 \]

2. **Finite pixel number effect and Poisson fluctuations**: because the number of pixels of each MPPC is finite and if multiple photons hit the same pixel the response is the same. The values were taken from MPPC data sheet.
\[PE_1 = n(1 - e^{-\varepsilon \cdot PE_0/n}) \]

3. **Cross-talk and after-pulse**
\[PE_2 = \frac{PE_1}{1-\rho} \]

4. **Fluctuation of gain** from pixel to pixel: random gaussian spread of light yield
\[PE_3 = gauss(\mu = PE_2, \sigma = 0.031) \]
The agreement of MC and real data is around 3%. I think that by tuning the MC and improving the track seeding algorithm we can reach a better agreement.

1. Reconstruction: select only sand-muons-like tracks
2. Mask the target plane (for example 4th plane)
3. Only select tracks having hits in neighbouring planes (n_0)
4. Check if the masked plane has an hit or not (n_1)

$$\text{efficiency} = \frac{n_0}{n_1}$$
Light yield in WAGASCI detector

- Light yield is evaluated using sand-muon tracks.
- The electronics response has not been implemented yet because we need to perform a test bench of the electronics. A characterization of the SPIROC2D chip was already done * by the developers but we need to do it again using the same configuration used for the Physics data taking.
- The calibration of WAGASCI is far from perfect, that could also explain the discrepancy in the light yield of MC and real data.
Conclusion and plans for the near future

- **Track reconstruction:**
 - Need to improve the tuning of the algorithm parameters of the MST algorithm
 - Need to evaluate which is the best algorithm for each subdetector

- **MC simulation of detector response:**
 - Need to implement the electronics response
 - Need to further tune the detector response parameters for the WAGASCI detector

- **Detector evaluation:**
 - Need to evaluate the track matching efficiency between WAGASCI and WallMRD / BabyMIND
 - Need to evaluate the reconstructed vertex position for WAGASCI
 - Need to evaluate momentum and angle reconstruction efficiency of tracks originating from the WAGASCI detector

- **Before the cross-section measurement:**
 - Need to finalize what is the topology of the signal
 - Need to define the phase-space for the xsec measurement
 - Need to define event selection criteria
Backup slides
WAGASCI / Baby MIND experiment

<table>
<thead>
<tr>
<th></th>
<th>Current ND280</th>
<th>WAGASCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume ratio</td>
<td>The ND280 FGD2 target is half carbon, half water while the SK target is pure water (Water:CH ~ 50:50)</td>
<td>The WAGASCI target is prevalently water (Water:CH ~ 80:20)</td>
</tr>
<tr>
<td>Angular acceptance</td>
<td>ND280 has limited sensitivity to side and backwards escaping muons</td>
<td>WAGASCI has good sensitivity to side-going muons thanks to the two SideMRDs</td>
</tr>
<tr>
<td>Individual contribution</td>
<td>It is a big detector so the individual contribution is very specialized and can be “lost/not recognizable”</td>
<td>It is a relatively small detector so the individual contribution is huge and immediately recognizable</td>
</tr>
</tbody>
</table>

FDBVIF / % BCE 8 " (" 4$ * BSF BUB EIGFSLOPGL BYJBOHM UFZ TFF UXP EIGFSLOCFBN QPCQMT XJU EIGFSLOQFEL RSFHZ * UTPQTOCMY CZ EPJCHB RJCQ BQJMMT HB100 HLFITUP BN PSF SFITSIDFE BCOF PG CFVSIOP RSFSHIFT
The threshold DAC is the threshold adjustment DAC. Because of a design flaw in the ASIC the threshold is applied on the undershoot of the signal. That is why the X axis of the plots is reversed.
WAGASCI

- 4π full angular acceptance
- Main target is 500kg of water (passive target)
- Readout system: scintillator, WLS fiber, MPPC
- Grid-like structure

Proton Module

- Forward acceptance
- Fully active scintillator target (556 kg CH)
- Readout system: scintillator, WLS fiber, MPPC
Muon range detectors

Wall MRD
- Sandwich-structure of iron planes and scintillator tracking planes
- Readout system: scintillator, WLS fiber, MPPC
- **Detect side going muons**
- Measure momentum by range

Baby MIND
- Iron-core magnet modules and scintillator tracking planes
- Readout system: scintillator, WLS fiber, MPPC
- **Detect forward going muons**
- **Measure momentum by range and curvature**
- Non uniform magnetic field to keep particles inside tracking region
CALIBRATION of SPIROC2D chip

Offline and online gain calibration should be possible ... in principle.

However, serious design flaws and hardware bugs in the frontend ASIC and electronics make achieving a precise and stable calibration a daunting, near impossible task.

Each of the plots below corresponds to a channel. The data taking period is 3 hours and the threshold was painstakingly set at 2.5 PEU.