High Statistics Inclusive Cross Section Measurements from MINERvA

Amy Filkins

William & Mary

For the MINERvA Collaboration

NDNN

March 16, 2021

CHARTERED 1693

Motivation

- Many processes contribute to the cross section at a few GeV
- Inclusive measurements provide stringent test of generators
- High statistics, small backgrounds
- Double differential cross sections in muon p_{||}, p_T
- p_{||} correlated with E_ν
 p_T correlated with Q²
 - Provides nice process separation without the model dependence that comes with using hard to reconstruct variables

Analysis

- Two parallel analyses done with different beam energies
 - Low energy beam $\langle \mathbf{E}_{\nu} \rangle \sim 3.5 \text{ GeV}$
 - Medium energy beam $\langle \mathbf{E}_{\nu} \rangle \sim 6$ GeV
- Signal definition:
 - $v_{\mu}CC$
 - Muon angle < 20° wrt beam
 - p_µ >1.5 GeV
- Minerva Tune v1
 - RPA, enhanced Valencia 2p2h, non-resonant pion tune
 - GENIE 2.8.4 (LE), GENIE 2.12.6(ME)

Low Energy Double Differential Cross Section

Low Energy Double Differential Cross Section

325,588 events

NDNN

William & Mary

MINERvA data
 MnvGENIE v1 — True DIS Q²>1,W>2 GeV
 QE+2p2h — Soft DIS Rest of GENIE DIS
 Resonant — Other CC

NDNN

William & Mary

MINERvA data
 MnvGENIE v1 — True DIS Q²>1,W>2 GeV
 QE+2p2h — Soft DIS Rest of GENIE DIS
 Resonant — Other CC

NDNN

William & Mary

 →
 MINERvA data

 →
 MnvGENIE v1
 True DIS Q²>1,W>2 GeV

 →
 QE+2p2h
 Soft DIS Rest of GENIE DIS

 →
 Resonant
 Other CC

William & Mary

11

MINERvA data
 MnvGENIE v1 — True DIS Q²>1,W>2 GeV
 QE+2p2h — Soft DIS Rest of GENIE DIS
 Resonant — Other CC

NDNN

William & Mary

Low Q² Resonant Suppressions

Addition of a low Q² resonant suppression better matches data in some regions (especially around flux peak)

William & Mary

Low Q² Resonant Suppressions

Addition of a low Q² resonant suppression better matches data in some regions (especially around flux peak)

William & Mary

14

Medium Energy Event Ratios

MINERvA data — MINERvA Tune
 QE+2p2h — Resonant
 True DIS — Soft DIS
 Other CC — Background

Unique to ME: area with fairly flat ratio at low p_{\parallel} , under predictions at highest p_{\parallel} , p_{τ}

NDNN

Ratio data/MnvGENIEv1

Low Energy – Model comparisons

Single Differential Cross Sections -p₁

- MnvGENIE cross section overpredicts at low p_T
- Underpredicts at higher p_τ
- P_{II} dependence isn't being accurately predicted

•

General underpredictions

17

Summary

- Measured cross sections aren't consistently reproduced by any model throughout phase space
- See similar trends with both data sets
- Indication that low Q² resonant suppression called for
- ME inclusive cross sections coming soon
- Many more ME analyses are underway
- Exclusive results can help differentiate between possible sources of mismodeling seen in inclusive results

Thank you!

NDNN

William & Mary

William & Mary

Low Energy cross section ratio

NDNN

Single Differential Cross Sections

William & Mary

Low Energy Double Differential Cross Section

325,588 events

Preliminary ME Migration

- Mostly diagonal
- There is more migration in the higher $p_{\scriptscriptstyle T}$ and $p_{\scriptscriptstyle \|}$ bins

NDNN

William & Mary

24