Constraints on neutrino electromagnetic properties from COHERENT elastic neutrinonucleus scattering

Speaker:

Yiyu Zhang

Institute of High Energy Physics, CAS

M. Cadeddu et al. *Phys.Rev.D* 102 (2020) 1, 015030

Based on a work in collaboration with M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, E. Picciau, Y. F. Li, Y. Y. Zhang.

Yiyu Zhang IHEP

2021/3/16

Coherent Elastic Neutrino-Nucleus Scattering

- Predicted in 1974 for $|\vec{q}| R \ll 1$ [Freedman, Physical Review D, 1974, 9(5): 1389]
- Taking into account interactions with both neutrons and protons

• The form factors $F_N(|\vec{q}|^2)$ and $F_Z(|\vec{q}|^2)$ describe the loss of coherence for $|\vec{q}| R \gtrsim 1$.

 $\mathbf{2}$

The COHERENT experiment

Neutrino electromagnetic properties

$$\langle r_{\nu_{\ell}}^2 \rangle_{\rm SM} = -\frac{G_{\rm F}}{2\sqrt{2}\pi^2} \left[3 - 2\ln\left(\frac{m_{\ell}^2}{m_W^2}\right) \right] \qquad \begin{cases} \langle r_{\nu_e}^2 \rangle_{\rm SM} = -0.83 \times 10^{-32} \,{\rm cm}^2, \\ \langle r_{\nu_{\mu}}^2 \rangle_{\rm SM} = -0.48 \times 10^{-32} \,{\rm cm}^2, \\ \langle r_{\nu_{\tau}}^2 \rangle_{\rm SM} = -0.30 \times 10^{-32} \,{\rm cm}^2. \end{cases}$$

[Bernabeu et al, PRD 62 (2000) 113012, NPB 680 (2004) 450]

Neutrino Charge Radii in CE ν NS

$$\begin{split} \Lambda_{\mu}(q) &= \left(\gamma_{\mu} - q_{\mu} \not\!\!\!/ q^{2}\right) F_{Q}(q^{2}) \longrightarrow r_{\nu_{\ell\ell'}}^{2} \\ \frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT}(E,T) &= \frac{G_{\mathrm{F}}^{2}M}{\pi} \left(1 - \frac{MT}{2E^{2}}\right) \left\{ \left[\left(g_{V}^{p} - \tilde{Q}_{\ell\ell}\right) ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2}) \right]^{2} + Z^{2}F_{Z}^{2}(|\vec{q}|^{2}) \sum_{\ell' \neq \ell} |\tilde{Q}_{\ell'\ell}|^{2} \right\} \\ \tilde{Q}_{\ell\ell'} &= \frac{\sqrt{2}\pi\alpha}{3G_{\mathrm{F}}} \left\langle r_{\nu_{\ell\ell'}}^{2} \right\rangle \end{split}$$

• Diagonal charge radii: $u_\ell + \mathcal{N}
ightarrow
u_\ell + \mathcal{N}$

- Transition charge radii: $\nu_{\ell} + \mathcal{N} \rightarrow \sum_{\ell' \neq \ell} \nu_{\ell' \neq \ell} + \mathcal{N}$
- Only depends on the fine-structure constant.

Process	Collaboration	Limit [10 ⁻³² cm ²]	CL
Reactor $\bar{\nu}_e - e$	Krasnoyarsk	$ \langle r_{\nu}^2 \rangle < 7.3$	90%
C C	TEXONO	$-4.2 < \langle r_{\nu_{-}}^2 \rangle < 6.6$	90%
Accelerator $\nu_e - e$	LAMPF	$-7.12 < \langle r_{\nu_s}^2 \rangle < 10.88$	90%
	LSND	$-5.94 < \langle r_{\nu_a}^2 \rangle < 8.28$	90%
Accelerator $\nu_{\mu} - e$ and $\bar{\nu}_{\mu} - e$	BNL-E734	$-5.7 < \langle r_{\nu_{\mu}}^2 \rangle < 1.1$	90%
Г. Г.	CHARM-II	$ \langle r_{\nu_{\mu}}^2 \rangle < 1.2$	90%
	[M.	CADEDDU et al. PHYS. REV. D 98, 11	3010 (2018)

Neutrino millicharge in $CE\nu NS$

$$\begin{split} \Lambda_{\mu}(q) &= \left(\gamma_{\mu} - q_{\mu} \not\!\!\!/ q^{2}\right) F_{Q}(q^{2}) \longrightarrow q_{\nu_{\ell\ell'}} \\ \frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT}(E,T) &= \frac{G_{\mathrm{F}}^{2}M}{\pi} \left(1 - \frac{MT}{2E^{2}}\right) \left\{ \left[\left(g_{V}^{p} - \tilde{Q}_{\ell\ell}\right) ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2}) \right]^{2} + Z^{2}F_{Z}^{2}(|\vec{q}|^{2}) \sum_{\ell' \neq \ell} |\tilde{Q}_{\ell'\ell}|^{2} \right\} \\ Q_{\ell\ell'} &= \frac{2\sqrt{2}\pi\alpha}{G_{\mathrm{F}}q^{2}} q_{\nu_{\ell\ell'}} \end{split}$$

• The strongest constraint: Neutrality of matter: From electric charge conservation in neutron beta decay $(n \rightarrow p + e^- + \bar{\nu}_e)$

$$q_{\nu_e} = (-0.6 \pm 3.2) \times 10^{-21} e$$

• SN 1987A:

$$|q_{\nu_e}| \lesssim 2 \times 10^{-17} \, e$$

Limit	Method	Reference	
$ q_{\nu_{\tau}} \lesssim 3 \times 10^{-4} e$	SLAC e^- beam dump	Davidson et al, (1991)	
$ q_{\nu_{\tau}} \lesssim 4 \times 10^{-4} e$	BEBC beam dump	Babu et al, (1993)	
$ q_{\nu} \lesssim 6 \times 10^{-14} e$	Solar cooling (plasmon decay)	Raffelt (1999)	
$ q_{\nu} \lesssim 2 \times 10^{-14} e$	Red giant cooling (plasmon decay)	Raffelt (1999)	
$ q_{\nu_e} \lesssim 3 \times 10^{-21} e$	Neutrality of matter	Raffelt (1999)	
$ q_{\nu_e} \lesssim 3.7 \times 10^{-12} e$	Nuclear reactor	Gninenko et al, (2006)	
$ q_{\nu_e} \lesssim 1.5 \times 10^{-12} e$	Nuclear reactor	Studenikin (2013)	

[Giunti, Studenikin, RMP 87 (2015) 531, arXiv:1403.6344]

Neutrino Magnetic and Electric Moments

$$\begin{split} &-i\sigma_{\mu\nu}q^{\nu}\left[F_{M}(q^{2})+iF_{E}(q^{2})\gamma_{5}\right] \longrightarrow \mu_{\nu\ell}\\ &\frac{d\sigma_{\nu\ell}^{mag}}{dT_{nr}}(E,T_{nr})=\frac{\pi\alpha^{2}}{m_{e}^{2}}\left(\frac{1}{T_{nr}}-\frac{1}{E}\right)Z^{2}F_{Z}^{2}(|\vec{q}|^{2})\left|\frac{\mu_{\nu\ell}}{\mu_{B}}\right|^{2}\\ &\frac{d\sigma_{\nu\ell}N}{dT_{nr}}(E,T_{nr})=\frac{d\sigma_{\nu\ell}^{SM}}{dT_{nr}}(E,T_{nr})+\frac{d\sigma_{\nu\ell}N}{dT_{nr}}(E,T_{nr})\\ &\frac{d\sigma_{\nu\ell}N}{dT_{nr}}(E,T_{nr})=\frac{d\sigma_{\nu\ell}N}{dT_{nr}}(E,T_{nr})+\frac{d\sigma_{\nu\ell}N}{dT_{nr}}(E,T_{nr})\\ &\frac{\sqrt{1-2}}{2}\frac{1}{\sqrt{1-2}}\frac{1}{\sqrt{1-2$$

T_e [MeV]

Fit of COHERENT data: neutrino electromagnetic properties [M. Cadeddu et al. Phys. Rev. D 102 (2020) 1, 015030)]

• constraints on the neutrino charge radii:

$$-78 < \langle r_{\nu_e}^2 \rangle < 22, -71 < \langle r_{\nu_\mu}^2 \rangle < 17 \quad [10^{-32} \text{cm}^2].$$

• constraints on the neutrino millicharge:

$$20 < q_{\nu_e} < 42, -12 < q_{\nu_\mu} < 20 \quad [10^{-8}e].$$

• constraints on the effective neutrino magnetic moment:

 $|\mu_{\nu_e}| < 56, |\mu_{\nu_{\mu}}| < 41 \quad [10^{-10}\mu_B].$

- neutrino charge radii, 100 higher than SM
- Improvement of the only existing laboratory bound of $q_{\nu_{\mu\mu}}$.
- Muon neutrino magnetic moment only about five times larger than the best current laboratory limit.

100

Summary

- CE ν NS: unique process to explore the neutrino electromagnetic properties.
- The combined fit of the COHERENT CsI and Ar: improvement of constraints on neutrino electromagnetic properties.
- CE ν NS: a new way to explore the nuclear and neutrino physics
 - Electroweak precision tests:
 - M. Cadeddu et al. Phys. Rev. D 101 (2020) 3, 033004
 - O. Tomalak et al. JHEP 02 (2021) 097
 - NSI:
 - B. Dutta et al. JHEP 09 (2020) 106
 - C. Giunti, Phys. Rev. D 101 (2020) 3, 035039
 - light vector mediators
 - O.G. Miranda et al. JHEP 05 (2020) 130
 - M. Cadeddu et al. JHEP 01 (2021) 116
 - Nuclear structure:
 - M. Cadeddu et al. Phys.Rev.Lett.120.072501
 - M. Cadeddu et al. arXiv: 2102.06153
 - D. K. Papoulias, Phys. Rev. D 102 (2020) 113004
 - P. Coloma et al. JHEP 08 (2020) 08, 030

• ...

Thanks