R. Plestid | UKY & FNAL | in collaboration with O. Tomalak & R.H.J. Hill

NEUTRINO NUCLEUS SCATTERING AND

COULOMB CORRECTIONS

MOTIVATION

Percent level neutrino physics calls for percent level theory.

Percent level neutrino physics calls for percent level theory.

MOTIVATION

QED effects are calculable, and large-logs and coherent effects can result in "large" effects $\sim O(\alpha L^2/\pi)$ or $O(Z\alpha)$. See talk by O. Tomalak

MOTIVATION

Percent level neutrino physics calls for percent level theory.

QED effects are calculable, and large-logs and coherent effects can result in "large" effects $\sim O(\alpha L^2/\pi)$ or $O(Z\alpha)$. See talk by O. Tomalak

expensive. Avoid introducing 9-dim integrals.

Coulomb corrections are theoretically "easy", but computationally Similar to optical potential

MOTIVATION

- Percent level neutrino physics calls for percent level theory.
- QED effects are calculable, and large-logs and coherent effects can result in "large" effects $\sim O\left(\alpha L^2/\pi\right)$ or $O(Z\alpha)$. See talk by O. Tomalak
- Coulomb corrections are theoretically "easy", but computationally expensive. Avoid introducing 9-dim integrals. Similar to optical potential
- This talk: Work towards a systematically improvable <u>analytic</u> treatment of Coulomb corrections. Aim towards consistent power counting and reliable error estimates.

INTRODUCTION

SOFT PHOTON EXCHANGE WITH NUCLEUS

Spectator nucleus becomes a background field.

Coulomb field distorts lepton.

In this talk we will ignore nucleon FSI.

DISTORTED WAVE BORN SERIES

Use out-state solution of Coulomb scattering problem.

S-matrix does not conserve momentum.

Loss of plane wave leads to loss of $(2\pi)^3 \delta^{(3)}(\Sigma P)$.

DISTORTED WAVE BORN SERIES

ส เวิลส์ดไม่สะสะไส สีเสยลด ระดาว์

Use out-state solution of Coulomb scattering problem.

Loss of plane wave leads to loss of $(2\pi)^3 \delta^{(3)}(\Sigma P)$

DISTORTED WAVE MATRIX ELEMENTS

 $S = (2\pi)^4 \delta^{(4)}(\Sigma P) i \mathscr{M} \longrightarrow S = 2\pi \delta(\Sigma E) i \mathsf{M}$

$d\Pi(2\pi)^4 \delta^{(4)}(\Sigma P) | \mathscr{M} |^2 \to d\Pi (2\pi) \delta(\Sigma E) | \mathsf{M} |^2 (\Sigma P)$

 $L_{\mu\nu} \rightarrow \left[d^3x d^3y \operatorname{Tr} \left[L_{\mu}(x) L_{\nu}(y) \right] \right]$

DISTORTED WAVE MATRIX ELEMENTS

 $S = (2\pi)^4 \delta^{(4)}(\Sigma P) i \mathscr{M} \longrightarrow S = 2\pi \delta(\Sigma E) i \mathsf{M}$

 $L_{\mu\nu} \rightarrow \left[d^3x d^3y \operatorname{Tr} \left[L_{\mu}(x) L_{\nu}(y) \right] \right]$

$d\Pi(2\pi)^4 \delta^{(4)}(\Sigma P) \left| \mathscr{M} \right|^2 \to d\Pi \ (2\pi) \delta(\Sigma E) \left| \mathsf{M} \right|^2 (\Sigma P)$

EXISTING LITERATURE

EXISTING LITERATURE

PHYSICAL REVIEW C

Approximate treatment of lepton distortion in charged-current neutrino scattering from nuclei

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255 (Received 18 November 1997)

The partial-wave expansion used to treat the distortion of scattered electrons by the nuclear Coulomb field is simpler and considerably less time-consuming when applied to the production of muons and electrons by low- and intermediate-energy neutrinos. For angle-integrated cross sections, however, a modification of the "effective-momentum" approximation seems to work so well that for muons the full distorted-wave treatment is usually unnecessary, even at kinetic energies as low as 1 MeV and in nuclei as heavy as lead. The method does not work as well for electron production at low energies, but there a Fermi function often proves perfectly adequate. Scattering of electron neutrinos from muon decay on iodine and of atmospheric neutrinos on iron is discussed in light of these results. [S0556-2813(98)04804-3]

PACS number(s): 25.30.Pt, 11.80.Fv

This is the <u>only</u> paper on Coulomb corrections for neutrino-nucleus scattering (to the best of my knowledge).

arXiv:nucl-th/9711045

VOLUME 57, NUMBER 4

APRIL 1998

Jonathan Engel

ENGEL & EMA / MEMA

PHYSICAL REVIEW C

VOLUME 57, NUMBER 4

Approximate treatment of lepton distortion in charged-current neutrino scattering from nuclei

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255 (Received 18 November 1997)

The partial-wave expansion used to treat the distortion of scattered electrons by the nuclear Coulomb field is simpler and considerably less time-consuming when applied to the production of muons and electrons by low- and intermediate-energy neutrinos. For angle-integrated cross sections, however, a modification of the "effective-momentum" approximation seems to work so well that for muons the full distorted-wave treatment is usually unnecessary, even at kinetic energies as low as 1 MeV and in nuclei as heavy as lead. The method does not work as well for electron production at low energies, but there a Fermi function often proves perfectly adequate. Scattering of electron neutrinos from muon decay on iodine and of atmospheric neutrinos on iron is discussed in light of these results. [S0556-2813(98)04804-3]

PACS number(s): 25.30.Pt, 11.80.Fv

Advocates for a effective momentum approximation. Validates against toy model with vector current.

arXiv:nucl-th/9711045

APRIL 1998

Jonathan Engel

OPTICAL POTENTIALS

Electron scattering on proton

Related work on optical potentials, e.g. Bodek & Cai arXiv:2004.00087

ELECTRON SCATTERING

Extensive literature in electron scattering.

Tjon & Wallace (2006) arXiv:nucl-th/0610115

Yennie Boos & Ravenhall <u>Phys. Rev. 137 (1965)</u>

> Yennie, Ravenhall, & Willson <u>Phys. Rev. 95 (1954)</u>

EFFECTIVE MOMENTUM

Advocates for a effective momentum approximation This is what is inside GENIE.

arXiv:nucl-th/9711045

Effective momentum near nucleus.

Re-scaled wave amplitude $kE/k_{eff}E_{eff}$. by 1

Effective momentum still conserved in phase space.

EIKONAL APPROXIMATION

EIKONAL APPROXIMATION ---- DIRAC EQUATION

 $\mathscr{U}_{k}^{(\pm)}(x) = e^{-i\omega t} e^{ikx} e^{i\chi^{(\pm)}(x)} u_{\beta}(k)$

Solve Dirac equation with Coulomb field iteratively

 $\chi^{(\pm)} = \chi_0^{(\pm)} + \frac{1}{E}\chi_1^{(\pm)} + \frac{1}{E^2}\chi_2^{(\pm)} + \dots$

EIKONAL APPROXIMATION ---- DIRAC EQUATION

$\chi_0^{(+)} = -\frac{1}{v} \int_{-\infty}^{\infty} dz \ V(z,b) \quad (\text{for } \hat{z} \cdot \hat{k} = 1)$

Solve Dirac equation with Coulomb field iteratively

$\chi^{(\pm)} = \chi_0^{(\pm)} + \frac{1}{E}\chi_1^{(\pm)} + \frac{1}{E^2}\chi_2^{(\pm)} + \dots$

TOY NUCLEAR MODEL

$\phi(p) \sim \frac{1}{r_A^3} e^{-r_A^2 p^2}$

ANTI-NEUTRINO + BOUND PROTON \rightarrow ANTI-LETPTON + FREE NEUTRON

$|\bar{\nu}\rangle + |\phi\rangle \rightarrow |\ell_{\text{out}}^+\rangle + |n\rangle$

 $1\chi_0(x)$

 $P_{0}(x)$

Focussing in transverse plane

 $P_{0}(x)$

Focussing in transverse plane

Hierarchy $\frac{1}{E_{\nu}} \ll r_A \lesssim \frac{1}{\sigma_{\perp}} \qquad \phi(p) \sim \exp[-r_A^2 p^2]$

Hierarchy $\frac{1}{E_{\nu}} \ll r_A \lesssim \frac{1}{\sigma_1} \qquad \phi(p) \sim \exp[-r_A^2 p^2]$

$d\sigma \sim d\sigma_{\rm PW} / . k_{_{7}} \rightarrow k_{_{7}}^{\rm eff} / . \delta^{(2)}(P_{\perp}) \rightarrow e^{-P_{\perp}^2/\sigma_{\perp}^2}$

Transverse Momentum Fluctuations

CONCLUSIONS

SUMMARY

- Analytic treatment possible using Eikonal expansion + hierarchy of scales (expansion in $1/E_{\nu}r_A$).
- Only one distorted wave allows for analytic calculations (in contrast to electron scattering)
- Effective momentum approximation appears at leading order with calculable corrections.
- Coulomb field induces transverse momentum fluctuations.

EXTRA SLIDES

Spectator nucleus becomes a background field.

Spectator nucleus becomes a background field.

Coulomb field distorts lepton.

Spectator nucleus becomes a background field.

Coulomb field distorts lepton.

One can also imagine adding nuclear optical potential.

$H = H_0 + V_{bkg} + H_{int}$

r

$H = H_0 + V_{bkg} + H_{int}$

1

$H = H_0 + V_{bkg} + H_{int}$

1

$H = H_0 + V_{bkg} + H_{int}$

ľ

 $k_{\text{eff}} \neq k_{\text{out}}$

$H = H_0 + V_{bkg} + H_{int}$

V

 $H_{\text{int}} = G_F \quad d^3x \ J^+_{\mu} J^-_{\nu} \eta^{\mu\nu}$

$H = H_0 + V_{bkg} + H_{int}$

Ζα

Nucleus is "infinitely" heavy: recoilless.

Can model as static Coulomb field.

Lepton wavefunction distorted by Coulomb field.

DISTORTED WAVE BORN APPROXIMATION

pert. th.

$S = \langle \phi^{(+)} | \psi^{(-)} \rangle \approx \langle \phi^{(+)}_{bkg} | H_{int} | \psi^{(-)}_{bkg} \rangle$ D' 6

DISTORTED WAVE BORN APPROXIMATION --- STATIC POTENTIAL

 $H = H_0 + V_{bkg} + H_{int}$ exact pert. th.

$H_0 + H_{\text{int}} = J_{\mu}(q) \ \bar{u}_{k'} \ \Gamma^{\mu} \ u_k \ (2\pi)^4 \delta^{(4)}(k' - k - q)$

pert. th.

 $H_{\text{bkg}} + \underbrace{H_{\text{int}}}_{k} \left[S = J_{\mu}(q) \right] \left[d^{3}x \ \bar{\mathscr{U}}_{k'}(x) \ \Gamma_{\mu} \ \mathscr{U}_{k}(x) \ e^{iqx} \right] (2\pi) \delta(\Sigma E)$ pert. th.

DISTORTED WAVE BORN APPROXIMATION ---- STATIC POTENTIAL

 $H = H_0 + V_{bkg} + H_{int}$ exact pert. th.

$H_0 + H_{\text{int}} = S = J_{\mu}(q) \ \bar{u}_{k'} \ \Gamma^{\mu} \ u_k \ (2\pi)^4 \delta^{(4)}(k' - k - q)$

pert. th.

pert. th.

$H_{\text{bkg}} + \underbrace{H_{\text{int}}}_{\text{bkg}} \quad S = J_{\mu}(q) \left[\int d^3x \ \bar{\mathscr{U}}_{k'}(x) \ \Gamma_{\mu} \ \mathscr{U}_{k}(x) \ e^{iqx} \right] (2\pi) \delta(\Sigma E)$

DISTORTED WAVE BORN APPROXIMATION ---- STATIC POTENTIAL

 $H = H_0 + V_{bkg} + H_{int}$ exact pert. th.

$H_0 + H_{\text{int}} = S = J_{\mu}(q) \ \bar{u}_{k'} \ \Gamma^{\mu} \ u_k \ (2\pi)^4 \delta^{(4)}(k' - k - q)$

pert. th.

 $H_{\text{bkg}} + \underbrace{H_{\text{int}}}_{\text{bkg}} \quad S = J_{\mu}(q) \left[\int d^3x \ \bar{\mathscr{U}}_{k'}(x) \ \Gamma_{\mu} \ \mathscr{U}_{k}(x) \ e^{iqx} \right] (2\pi) \delta(\Sigma E)$ pert. th. **MOMENTUM NOT CONSERVED**

BASIC DEFINITIONS STEP 1: AMPLITUDE WITH DISTORTED WAVES

$\langle n\ell | H_{int} | B\nu \rangle = (2\pi i)\delta(E_R + E_\nu - E_n - E_\ell) M$

 $|B\rangle = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \,\phi(p) \,|p\rangle$ $\mathbf{M} = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \,\phi(p) \langle n \ell \,|\, H_{\mathrm{int}} \,|\, \nu p \rangle$

