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» This talk: Work towards a systematically improvable analytic
treatment of Coulomb corrections. Aim towards consistent power
counting and reliable error estimates.
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Extra Integrals =3 + 3 + 3 =9
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Approximate treatment of lepton distortion in charged-current neutrino scattering from nuclei
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The partial-wave expansion used to treat the distortion of scattered electrons by the nuclear Coulomb field
is simpler and considerably less time-consuming when applied to the production of muons and electrons by
low- and intermediate-energy neutrinos. For angle-integrated cross sections, however, a modification of the
“‘effective-momentum’’ approximation seems to work so well that for muons the full distorted-wave treatment
is usually unnecessary, even at kinetic energies as low as 1 MeV and in nuclei as heavy as lead. The method
does not work as well for electron production at low energies, but there a Fermi function often proves perfectly
adequate. Scattering of electron neutrinos from muon decay on iodine and of atmospheric neutrinos on iron is

discussed in light of these results. [S0556-2813(98)04804-3 ]
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Electron scattering on proton

FE =
electron

(Eo, p)

E'=(Ey—v,p)
electron

Petx =P + |Vest|
El — E/

vix

(Ef,pes) = (Tf + Mp + Uept + Vg |, k + as)

proton
Ef = E} =T + Mp

Unobserved energy

” = 8"+ (Ef) + mro
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EIKONAL APPROXIMATION — DIRAC EQUATION
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EIKONAL APPROXIMATION — DIRAC EQUATION
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Solve Dirac equation with Coulomb field iteratively
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TOY NUCLEAR MODEL



ANTI-NEUTRINO + BOUND PROTON — ANTI-LETPTON + FREE NEUTRON
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ANTI-NEUTRINO + BOUND PROTON — ANTI-LETPTON + FREE NEUTRON

| | |
Hierarchy — < ry, S — DO(p) ~ exp[—lﬁpz]

EI/ O,

do ~ dopy /. k, = kT /. 6@(P)) — e il

Transverse Momentum Fluctuations
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COULOMB CORRECTIONS

SUMMARY

» Analytic treatment possible using Eikonal expansion +
hierarchy of scales (expansionin 1/E r,) .

» Only one distorted wave allows for analytic calculations (in
contrast to electron scattering)

» Effective momentum approximation appears at leading order
with calculable corrections.

» Coulomb field induces transverse momentum fluctuations.
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COULOMB FIELD OF A NUCLEUS

= H() T kag T Hint
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Hint — GF[d3x J;-JD—},]//U/

» Nucleus is “infinitely”
heavy: recoilless.

» Can model as static
Coulomb field.

» Lepton wavefunction
distorted by Coulomb
field.
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DISTORTED WAVE BORN APPROXIMATION — STATIC POTENTIAL
H=Hy+ Vyy+ Hi

exact pert. th.
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pert. th.

ENERGY CONSERVED
kug 1nt ‘ 5=J (Q)[ Jd3x CZ_lk’(x) [’ U CZlk(x) eiqx (Zﬂ)é(ZE)
pert. th. MOMENTUM NOT CONSERVED



BASIC DEFINITIONS

STEP 1: AMPLITUDE WITH DISTORTED WAVES
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