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▸Percent level neutrino physics calls for percent level theory.

▸QED effects are calculable, and large-logs and coherent effects can 
result in “large” effects   .∼ O (α𝖫2/π) or O(Zα)

▸Coulomb corrections are theoretically “easy”, but computationally 
expensive. Avoid introducing 9-dim integrals.

▸This talk: Work towards a systematically improvable  analytic 
treatment of Coulomb corrections.   Aim towards consistent power 
counting and reliable error estimates. 

See talk by O. Tomalak 

Similar to optical potential
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SOFT PHOTON EXCHANGE WITH NUCLEUS 
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COULOMB FIELD OF A NUCLEUS 
▸  Spectator nucleus 

becomes a background 
field.  

▸  Coulomb field distorts 
lepton.  

▸ In this talk we will ignore 
nucleon FSI. 
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DISTORTED WAVE BORN SERIES
▸Use out-state solution of  

Coulomb scattering 
problem.  

▸S-matrix does not 
conserve momentum.  

▸Loss of plane wave leads 
to loss of  .(2π)3δ(3)(ΣP)
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DISTORTED WAVE BORN SERIES
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γμ(1 − γ5)uke−ikx → 𝒰̄k′�

(x) γμ(1 − γ5)uke−ikx

▸Use out-state solution of  
Coulomb scattering 
problem.  

▸Loss of plane wave leads 
to loss of (2π)3δ(3)(ΣP)
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DISTORTED WAVE MATRIX ELEMENTS

S = (2π)4δ(4)(ΣP)iℳ S = 2πδ(ΣE)i𝖬→
Lμν → ∫ ∫ d3x d3y Tr [Lμ(x)Lν(y)]

dΠ(2π)4δ(4)(ΣP) |ℳ |2 → dΠ (2π)δ(ΣE) |𝖬 |2 (ΣP)

Extra Integrals = 3 + 3 + 3 = 9
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EXISTING LITERATURE 

▸This is the only paper on Coulomb corrections for neutrino-nucleus 
scattering  (to the best of my knowledge).  

arXiv:nucl-th/9711045

https://arxiv.org/abs/nucl-th/9711045


ENGEL & EMA / MEMA

▸Advocates for a effective momentum approximation. 

arXiv:nucl-th/9711045

▸Validates against toy model with vector current. 

https://arxiv.org/abs/nucl-th/9711045


OPTICAL POTENTIALS

▸Related work on optical potentials,  
e.g. Bodek & Cai arXiv:2004.00087

▸Extensive literature in electron 
scattering.  

▸Tjon & Wallace (2006) 
arXiv:nucl-th/0610115 

▸Yennie Boos & Ravenhall 
 Phys. Rev. 137 (1965) 

▸Yennie, Ravenhall, & Willson 
Phys. Rev. 95 (1954)

ELECTRON SCATTERING

https://arxiv.org/abs/nucl-th/0610115
https://journals.aps.org/pr/abstract/10.1103/PhysRev.137.B882
http://www.apple.com


EFFECTIVE MOMENTUM

▸Advocates for a effective momentum approximation 

arXiv:nucl-th/9711045

V(r)

keff kout

▸  Effective momentum 
near nucleus. 

▸Re-scaled wave amplitude   
by    .kE/keffEeff

▸This is what is inside GENIE. 

▸  Effective momentum still 
conserved in phase space. 

https://arxiv.org/abs/nucl-th/9711045
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χ(±) = χ(±)
0 +

1
E

χ(±)
1 +

1
E2

χ(±)
2 + . . .

Solve Dirac equation with Coulomb field iteratively 

χ(+)
0 = −

1
v ∫

z

−∞
dz V(z, b) (for ̂z ⋅ ̂k = 1)



TOY NUCLEAR MODEL 



ANTI-NEUTRINO + BOUND PROTON   ANTI-LETPTON + FREE NEUTRON→

| ν̄ ⟩ + |ϕ ⟩ → |ℓ+
out ⟩ + |n ⟩

ϕ(p) ∼
1
r3
A

e−r2
Ap2 eiχ0(x)
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eiχ0(x)

χ0(x) ≈ δk × z + 1
2 σ2

⊥ × b2 + . . .

Y, B, & R (1965)
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ANTI-NEUTRINO + BOUND PROTON   ANTI-LETPTON + FREE NEUTRON→

Hierarchy
1
Eν

≪ rA ≲
1
σ⊥

ϕ(p) ∼ exp[−r2
Ap2]

dσ ∼ dσPW / . kz → keff
z / . δ(2)(P⊥) → e−P2

⊥/σ2
⊥

Transverse Momentum Fluctuations



CONCLUSIONS



COULOMB CORRECTIONS

SUMMARY

▸ Analytic treatment possible using Eikonal expansion + 
hierarchy of scales (expansion in ) .   

▸ Only one distorted wave allows for  analytic calculations (in 
contrast to electron scattering) 

▸ Effective momentum approximation appears at leading order 
with calculable corrections.  

▸ Coulomb field induces transverse momentum fluctuations. 

1/EνrA
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COULOMB FIELD OF A NUCLEUS 
▸  Spectator nucleus 

becomes a background 
field.  

▸  Coulomb field distorts 
lepton.  

▸  One can also imagine 
adding nuclear optical 
potential. 
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Uopt



H = H0 + Vbkg + Hint

COULOMB FIELD OF A NUCLEUS 

Vbkg =
Zα
r

H0

ν

ℓ



H = H0 + Vbkg + Hint

COULOMB FIELD OF A NUCLEUS 

Vbkg =
Zα
r

H0

ν

ℓ



H = H0 + Vbkg + Hint

COULOMB FIELD OF A NUCLEUS 

Vbkg =
Zα
r

H0

kout

ν

ℓ



H = H0 + Vbkg + Hint

COULOMB FIELD OF A NUCLEUS 

Vbkg =
Zα
r

H0
keff

kout

ν

ℓ



H = H0 + Vbkg + Hint

COULOMB FIELD OF A NUCLEUS 

Vbkg =
Zα
r

H0
keff

kout

keff ≠ kout

ν

ℓ



H = H0 + Vbkg + Hint

COULOMB FIELD OF A NUCLEUS 

Vbkg =
Zα
r

Hint = GF ∫ d3x J+
μ J−

ν ημν

▸ Nucleus is “infinitely” 
heavy: recoilless. 

▸ Can model as static 
Coulomb field.  

▸ Lepton wavefunction 
distorted by Coulomb 
field. 



H = H0 + Vbkg

exact

+ Hint⏟
pert. th.

S = ⟨ϕ(+) |ψ(−)⟩ ≈ ⟨ϕ0 |Hint |ψ0⟩

DISTORTED WAVE BORN APPROXIMATION
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exact

+ Hint⏟
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S = Jμ(q) ūk′�
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DISTORTED WAVE BORN APPROXIMATION  — STATIC POTENTIAL
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H0 + Hint⏟
pert. th.

Hbkg + Hint⏟
pert. th.

S = Jμ(q)[ ∫ d3x 𝒰̄k′�
(x) Γμ 𝒰k(x) eiqx] (2π)δ(ΣE)

MOMENTUM NOT CONSERVED

ENERGY CONSERVED



BASIC DEFINITIONS

STEP 1: AMPLITUDE WITH DISTORTED WAVES

⟨nℓ |Hint |Bν⟩ = (2πi)δ(EB + Eν − En − Eℓ) M

|B⟩ = ∫
d3p

(2π)3
ϕ(p) |p⟩

M = ∫
d3p

(2π)3
ϕ(p)⟨nℓ |Hint |νp⟩


