

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

Status of the ENUBET monitored neutrino beam

M. Pari (University and INFN Padova) on behalf of the ENUBET Collaboration

New Directions in Neutrino-Nucleus Scattering NUSTEC Workshop, 15-18 March 2021

Overview

The ENUBET project: Enhanced NeUtrino BEams from kaon Tagging

ERC grant 2016-2022

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

Goal:

Design of a monitored neutrino beam Reduction of neutrino flux systematics at the 1% level (additional: energy at 10%) Opening for high precision cross section measurement (1%)

CERN Neutrino Platform experiment

NP06/ENUBET

The ENUBET Collaboration: 60 Physicists, 12 Institutions

Concept of monitored neutrino beam:

- Decay tunnel fully instrumented
- Direct estimation of neutrino flux from production vertex particles
- Bypassing high uncertainty hadroproduction based flux extimation

The ENUBET project

The ENUBET project

- Beamline (baseline option): narrow band beam at 8.5 GeV/c secondaries with a 5-10% momentum bite
 - Narrow-Band Off-Axis (NBOA) technique [*]
 - Full energy separation of $\,
 u_{\mu_{\mathbf{K}}} \,$ and $\,
 u_{\mu\pi} \,$ components
 - Direct angle-momentum correlations from two-body decays

Estimation of neutrino energy from impact radius @detector

[*] F. Acerbi et al., CERN-SPSC-2018-034

The ENUBET beamline

NDNN NUSTEC Workshop, 16/03/2021, M.Pari

Proton extraction studies

Dedicated slow extraction studies at CERN-SPS:

horn-compatible slow extraction

- From experimental campaign:
 - → Implemented **new pulsed slow extraction** (burst-mode)
 - → Optimized in operation down to **10 ms pulses @10 Hz**

Input burst length [ms]

- From simulations:
 - → 3-10 ms range of pulse lengths

General extraction method: could be used for other applications (e.g. cosmic veto)

NDNN NUSTEC Workshop, 16/03/2021, M.Pari

20.0

Magnetic horn

Developed optimization framework for the magnetic horn:

- Horn simulated with GEANT4 model
- Genetic algorithm used for optimization
- Hardware constraints enforced
- First candidates available

Next:

-1500 -1000 z [mm]

NDNN NUSTEC Workshop, 16/03/2021, M.Pari

500

Decay tunnel instrumentation

Instrumentation of decay tunnel [*]

- After dedicated studies (simulations, prototyping, test beams):
 - → Chosen final design: longitudinally segmented calorimeters
 - → Lateral readout to SiPM (space for shielding: factor 18 reduction)
 - \rightarrow Custom DAQ under development

of 11

NDNN NUSTEC Workshop, 16/03/2021, M.Pari

[*] JINST 15(2020)08, P08001; JINST 14 (2019) 02, P02029; NIM A 956(2020)163379 ₈

Performance

Full simulation of the instrumented decay tunnel in GEANT4:

- → Particle identification of each detected event based on deposited energies and photon veto.
- → More in detail: 15 parameters neural network trained over pure samples.
- → Main results:

For muons:

S/N: 6.1 Efficiency: 34% (dominated by geometrical)

Visible Energy (NN)

 $9 \hspace{0.1in} {\rm of} \hspace{0.1in} 11 \\$

Conclusions and next steps

- Design phase of ENUBET terminated:
 - → Simulations nearly completed
 - → A final demostrator of the tagger will be built and tested at the renovated CERN-PS East Area by 2022
- Promising results up to now: **project on schedule**
- Fluxes and spectra will be updated with the final beamlines (baseline static, low-energy, horn option)
- The final systematics on the neutrino fluxes (electron and muon) are under evaluation

Thank you for your attention

- Backup —

ENUBET: reach

The ENUBET beamline

Baseline option: fully static beamline

Effect of horn on beam

NDNN NUSTEC Workshop, 16/03/2021, M.Pari

Phase space after target

x [m]

15 of 11