Dark Neutrino Simulations with GENIE on SBND

YORT-

ZEPA

DET

8

Iker Loïc de Icaza Astiz for the SBND Collaboration

<u>i.de-icaza-astiz@sussex.ac.uk</u>

New Directions in Neutrino-Nucleus Scattering, NuSTEC Workshop

15th March 2021

BSM Physics on SBND

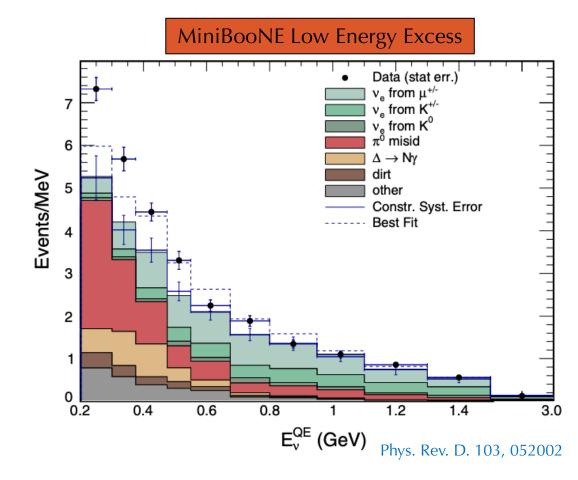
UNIVERSIT OF SUSSEX

 One of the outstanding puzzles in neutrino physics are the ~1 eV² anomalies, particularly the Low Energy Excess observed by MiniBooNE.

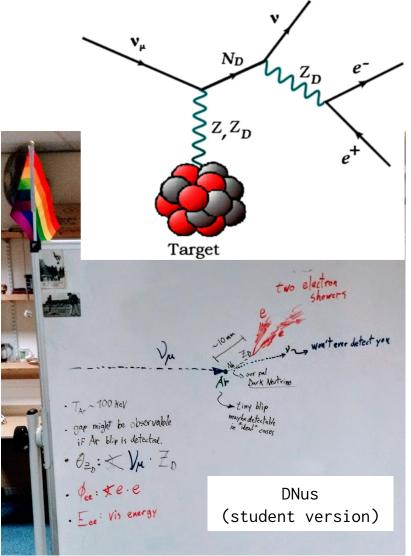
SBND

- It merits different avenues of research, Beyond Standard Model physics one of them.
- SBND qualities that enable a rich program of new exotic searches:

~1mm special resolution


Excellent particle identification

Fine calorimetry sampling


High flux beam and large statistics

Dark Neutrino Portal to Explain MB US

- New Dark Sector with a **dark neutrino** and **dark gauge boson**
- Both with masses in the range of ~10 to ~100 MeV
- The process goes:
 - beam neutrino *v* interacts **coherent quasi elastically** with **Ar** nucleus
 - upscatters to **dark neutrino** $N_{\mathcal{D}}$, which in turn decays to
 - neutrino v and dark boson $Z_{\mathcal{D}}$, this last one decays to
 - e⁺ e⁻, aka *the signal*
 - small hadronic interaction, if at all detectable
- Explain MiniBooNE Low Energy Excess: ee is highly boosted such that MB can't distinguish them and are construe as v_e CCQE-like
- Main reference paper

https://doi.org/10.1103/PhysRevLett.121.241801

Cross Section and Free Parameters

 $\frac{d\sigma}{dT_T} = \frac{2\pi\alpha_{EM}\alpha_D F F^2 \varepsilon^2 |U_{\mu4}|^2 |U_{D4}|^2 Z_T^2 \left(M_N^2 (T_T - 2E_\nu - M_T) + 2M_T (2E_\nu^2 - 2T_T E_\nu + T_T (T_T - M_T)) \right)}{E_\nu^2 \left(M_{Z_D}^2 + 2T_T M_T \right)^2}$

Categories	Symbol	Property	Default Value
	M_{Z_D}	Dark Mediator	0.420 GeV
Masses	M_N	Dark Neutrino	0.03 GeV
	Е	Kinetic Mixing	1.66e-4
Mixings	$U_{\alpha 4}$	(Squared) Flavour Mixing	(1e-10, 9e-7, 1e-10)
	α_D	Dark Gauge Coupling	0.25

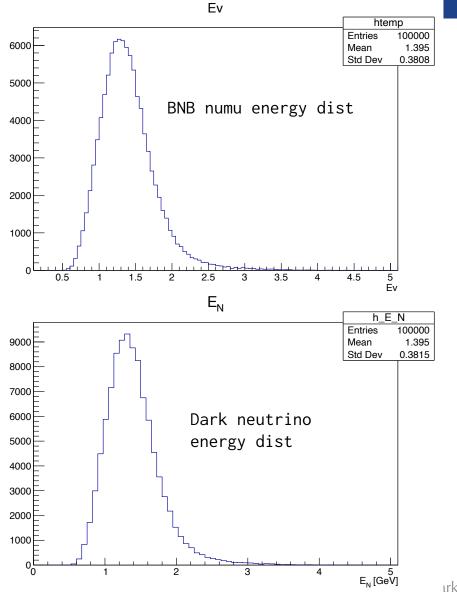
- Fairly simple cross section equation
- Economically computed and integrated
- Currently set to the values used in the reference paper
- These parameters modify the cross section formula and ultimately the relevant observable kinematic variables
 - Reweighting is not straightforward

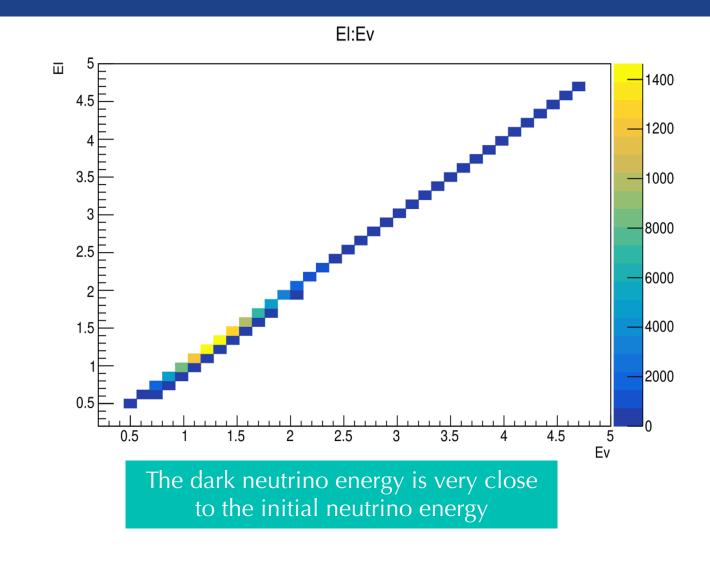
DNus in GENIE

- With the guidance of M. Roda (U. Liverpool), I have created a fully functional module which generates Dark Neutrinos.
- Decays of $N_{\mathcal{D}}$ and $Z_{\mathcal{D}}$ handled within GENIE, with the 3+10 decay channels relevant to the energy range implemented.
- Form Factor suitable for this interaction (Phys. Lett. B. 1191.264:114-119)
- 7 model parameters integrated and controlable
- Extensively stress tested:
 - ✤ 100+ isotopes,
 - 6 neutrinos
 - Energies up to 1PeV
- Available in GENIE v3.2.

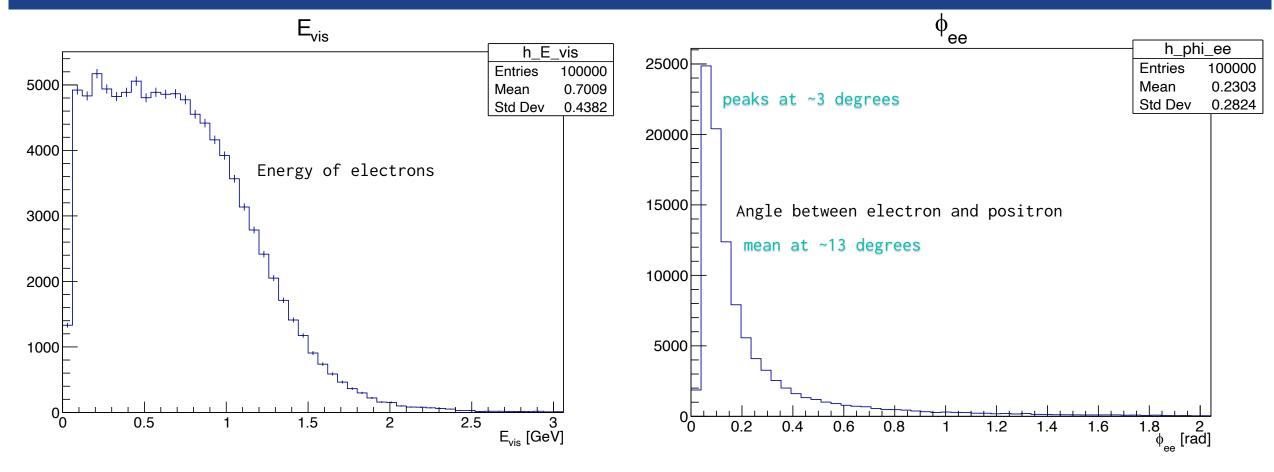
Nucl.Instrum.Meth.A614 (2010) 87-104

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

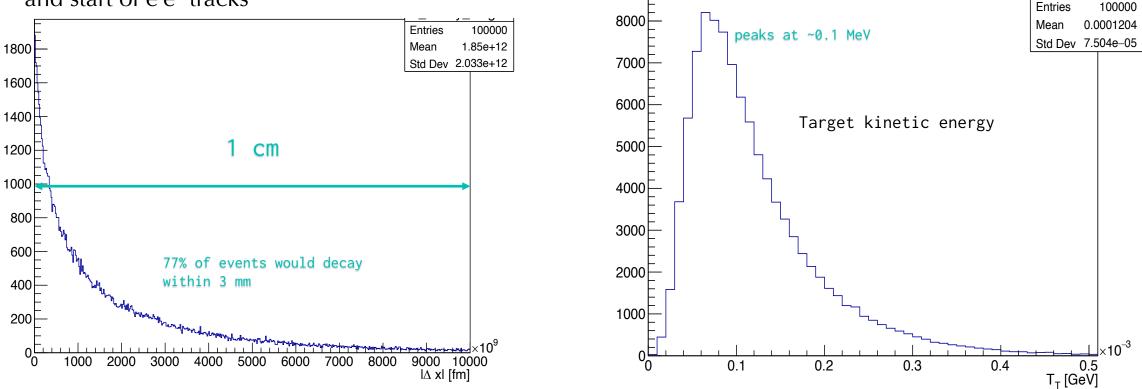

IGENIE GHEP Event Record [print level: 3]															
Idx	l	Name	Ist	I PDG		Moth	er l	Daugh	ter l	Px	I	Py I	Pz	ΕI	m
 0 1 2 3 4 5 6 7		nu_mu Ar40 nu_D Ar40 nu_mu Z_D e-	0 0 3 1 3 1 3 1	1000180400 2000030000 1000180400 14 2000030001 11		-1 -1 0 1 2 2 5 5	-1 -1 -1 -1 -1 -1 -1 -1	2 3 4 -1 -1 6 -1 -1	2 3 5 -1 -1 7 -1 -1	0.000 0.000 0.061 -0.061 0.128 -0.067 -0.045 -0.045 -0.022		0.000 0.000 0.018 -0.018 -0.071 0.089 0.069 0.019	1.000 0.000 0.905 0.095 0.079 0.826 0.682 0.144	1.000 37.216 1.000 37.216 0.166 0.834 0.687 0.147	0.000 37.216 0.420 37.216 0.000 0.030 0.001
	 Fin-1	e+ Init:	y 1	-11	, 	5		-11	ו ב- ו	-0.022 		0.019	0.144 1		0.001
 	Verte	ex:	nu_r	nu @ (x =	0	. 00000	 m, у	=	0.000	00 m, z	=	0.00000	m, t =	0.000000e	+00 s)
Err flag [bits:15->0] : 000000000000000 1st set: none Err mask [bits:15->0] : 11111111111111 Is unphysical: NO Accepted: YES															
sig(Ev) = 5.24919e-42 cm^2 dsig(Ev;{K_s})/dK = 3.00880e-38 cm^2/{K} Weight = 1.00000															


Dark Neutrino Simulations with GENIE on SBND | Iker de Icaza

Truth Variables of DNus in Ar



Truth Variables of DNus in Ar



Dark Neutrino Simulations with GENIE on SBND | Iker de Icaza

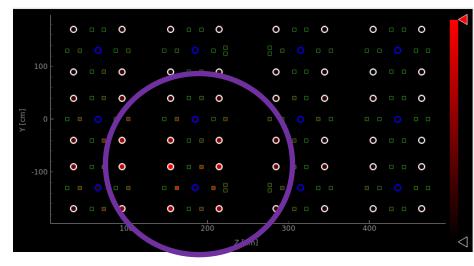
Truth Variables of DNus in Ar

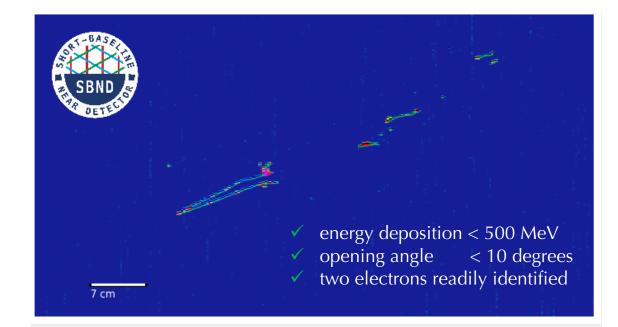
Gap between initial interaction and start of e⁻e⁺ tracks

There's a fraction of events where displaced tracks from a tiny blip, are an extra handle for identifying DNu events

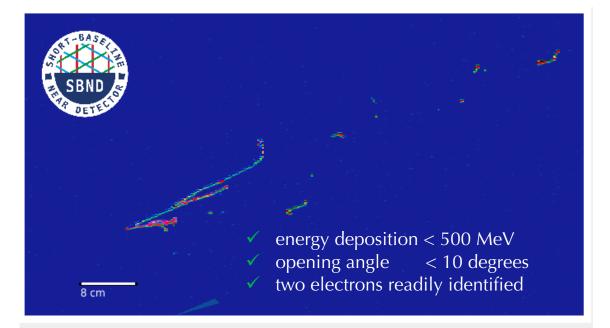
8

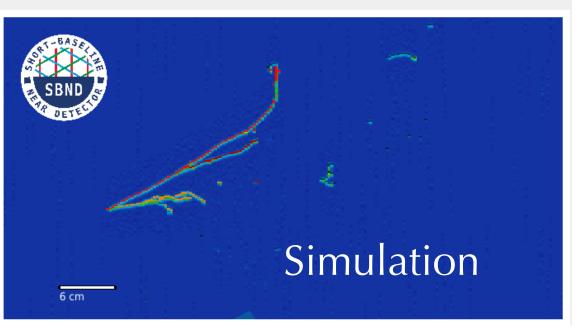
7


OF SUSSE


hΤ

Nucleus Recoil Energy


Dark Neutrino Event in SBND

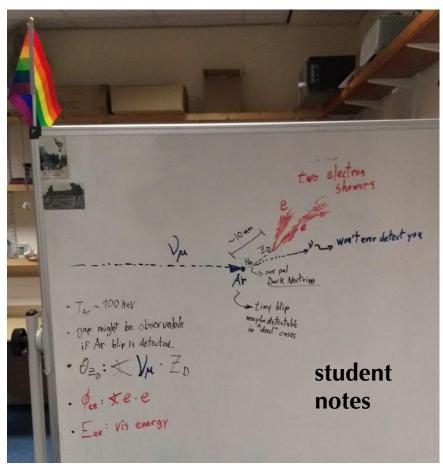

- All technical challenges related to the integration of the generator module to our simulation framework have been overcome and I can routinely simulate DNu events, on their own or along with standard neutrino interactions.
- The goal is for this process to be part of the suit of simulations available for the broader LArTPC and neutrino community.

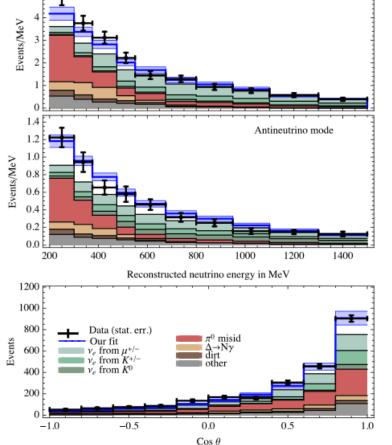
Tagging Dark Neutrino Events in SBND

Agnostic Approach:

- Look for events that have two clear electron interactions coming from a common neutrino vertex
- Require little to no hadronic interaction
- Expect more on this soon

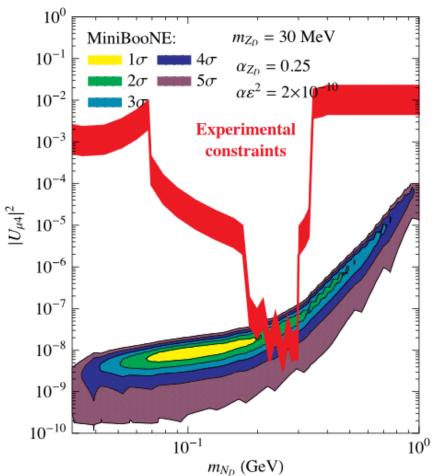
- □ Fully working Dark Neutrino module implemented in GENIE available in v3.2.
- Infrastructure in place to expand model to have more interactions types and other energy ranges and physics outcomes.
- Breaking ground on SBND and creating technical expertise to integrate new BSM models with our simulations framework.
- Ongoing: reconstruction and selection analysis of ee pairs in SBND simulations, that is agnostic to specific model parameters.
- Dark Neutrinos search is a good prospect for SBN program, specially SBND, as it leverages the superb qualities of LArTPCs and the high flux of interactions.


Backup


Additional observations

UNIVERSITY OF SUSSEX

- It has several routes to be expanded:
 - Neutrino masses model, might become relevant for DUNE energies
 - Similar observables but through other internal mechanism
 - Add NC, RES interactions which are relevant for other energy ranges
- None of which I plan to tackle for the foreseeable future
- Unlike oscillations, there's no L/E dependence so it's observable in SBND and ICARUS. Will be much more common in SBND due to the high flux
- The decay of π^{o} are a source of background, but can be suppressed by requiring the absence of a gap between vertex and showers and no hadronic interaction



Neutrino mode

 Reference paper provides a set of parameters values that closely follows the shape of MB LEE

Dark Neutrinos on mineral oil

• By default my module runs with these values

Loo