Electron scattering for neutrino physics at MAMI

Luca Doria (<u>doria@uni-mainz.de</u>) PRISMA+ Cluster of Excellence and Institute for Nuclear Physics Johannes Gutenberg University Mainz

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Introduction

- Long base-line Neutrino Experiments
- Relevance of Electron-Scattering for Neutrino Physics

Experiments at MAMI

Future Directions

Luca Doria, JGU Mainz

Long Base-Line Experiments

Far Detector

$$N_{FD}(\nu_{\alpha} \to \nu_{\beta}, E_R) =$$

Luca Doria, JGU Mainz

Near Detector $N_{ND}(\nu_{\alpha}, E_R) = \int dE_{\nu} \Phi_{\nu_{\alpha}}(E_{\nu}) \times \sigma(E_{\nu}) \times R_{\nu_{\alpha}}(E_{\nu}, E_R)$

 $dE_{\nu}\Phi_{\nu_{\alpha}}(E_{\nu}) \times \sigma(E_{\nu}) \times R_{\nu_{\alpha}}(E_{\nu}, E_{R}) \times P(\nu_{\alpha} \to \nu_{\beta}, E_{\nu})$

Why nuclei are relevant for neutrino physics ?

Electron Scattering vs Neutrino Scattering

Neutrino-Nucleus scattering

 $\frac{d^2\sigma}{d\Omega_{k'}d\omega} = \sigma_0 \left[L_{CC}R_{CC} + L_{CL}R_{CL} + L_{LL}R_{LL} + L_TR_T \pm L_{T'}R_{T'} \right]$

(Unpolarized) Electron-Nucleus scattering $\frac{d^2\sigma}{d\Omega d\omega} = \left(\frac{d\sigma}{d\Omega}\right)_{MHH} \left[\frac{Q^4}{\vec{q}^4}R_L(q) + \left(\frac{1}{2}\frac{Q^2}{\vec{q}^2}\right)\right]_{MHH} \left[\frac{Q^4}{\vec{q}^4}R_L(q) + \left(\frac{1}{2}\frac{Q^4}{\vec{q}^2}\right)\right]_{MHH} \left[\frac{Q^4}{\vec{q}^4}R_L(q) + \left(\frac{1}{2}\frac{Q^4}{\vec{q}^2}\right)\right]_{MH} \left[\frac{Q^4}{\vec{q}^4}R_L(q) + \left(\frac{1}{2}\frac{Q^4}{\vec{q}^2}\right)\right]_{MH} \left[\frac$

Use electrons for testing neutrino-nucleus interactions generators.

Luca Doria, JGU Mainz

$$+\tan^2 rac{ heta}{2} R_T(q) \bigg] = \left(rac{d\sigma}{d\Omega}
ight)_{Mott} \bigg[\sigma_L + \sigma_T\bigg]$$

The Racetrack Microton

Luca Doria, JGU Mainz

The MAMI Accelerator Facility

MESA

Mainz Energy-recovery Superconducting Accelerator

A1 Collaboration **3-Spectrometers Setup**

NuSTEC Workshop, Mar 2021

A1 Collaboration

Luca Doria, JGU Mainz

Spectrometers

	A	B	С
Configuration	QSDD	D	QSDE
Max.Momentum (MeV)	735	870	551
Solid Angle (msr)	28	5,6	28
Mom. Resolution	10-4	10-4	10-4
Pos. Res at Target (mm)	3-5		3.5
electron	beam C		3

Electron Scattering: Existing Dataset

<u>M. Mihovilovic (J.Stefan Inst.)</u>

[nb/sr/GeV]

GENIE (2.x tune) calculation kindly from A.Ankowski

In the near future: Oxygen and Argon

Waterfall target

* Window-less targets: backgrounds reduction * Exclusive measurements possible

Luca Doria, JGU Mainz

Cluster-jet Target

Contribute to next generation LB neutrino physics program

* Neutrinos are a concrete case of new physics, top priority in particle/fundamental physics * MAMI + A1 well suited for precision measurements of eN cross sections * More ¹²C data to analyze: L/T separation, Coulomb sum rule, ...

In the future

- * Measurements on Argon and Oxygen with a <u>Jet Target</u>
- * Exclusive measurements, pion production, ...
- * MESA: precision low energy eN scattering (an opportunity for SN neutrinos?)
- * Complementary to the JLab program

