Angular distributions in Monte Carlo event generation of weak single-pion production

Kajetan Niewczas

Kajetan Niewczas

NDNN NuSTEC Workshop

15 March 2021

The physics problem

 $\nu + N \rightarrow l^- + N' + \pi$

- **Single-pion production** (SPP) is an essential dynamics for accelerator-based experiments
- There many measurements sensitive to pion angular distributions ($\cos \theta_{\pi}$)

 $\nu + N \rightarrow l^- + (\Delta \rightarrow N' + \pi)$

NuWro models the ∆-resonance excitation
→ it decays according to the ANL/BNL angular fits

 $\frac{\mathsf{d}^2 \sigma_\Delta}{\mathsf{d} Q^2 \mathsf{d} W} \rightarrow \frac{\mathsf{d}^4 \sigma_\pi}{\mathsf{d} Q^2 \mathsf{d} W} \times \frac{\mathsf{d} f_\Delta(Q^2)}{\mathsf{d} \Omega^*_\pi}$

 $\circ~$ The nonresonant background is extrapolated from the DIS formalism into the lower regions of W, Q^2

FIG. 15. Distribution of events in the pion polar angle $\cos\theta$ for the final state $\mu^- p \pi^+$, with $M(p \pi^+) < 1.4$ GeV. The curve is the area-normalized prediction of the Adler model.

Radecky et al. [ANL Collaboration], Phys.Rev. D 25 (1982) 1161

• Default NuWro

• Free nucleon

• Fixed kinematics:

 $\begin{array}{rcl} \mathsf{E} &=& 1 \ \text{GeV} \\ \mathsf{Q}^2 &=& 0.1 \ \text{GeV}^2 \\ \mathcal{W} &=& 1230 \ \text{MeV} \end{array}$

(total number of 10⁷ events over the whole phase space)

Kajetan Niewczas

NDNN NuSTEC Workshop

15 March 2021 3 / 15

Ghent low energy model of SPP

- The model of Ref. [R. González-Jiménez et al., Phys.Rev. D 95 (2017) 113007]
- The low-energy part based on the Valencia model

- Bottleneck for the implementation is the code execution time
- Adding a nuclear model will further increase the complexity of the implementation

Kajetan Niewczas

Implementation

• Working in the Adler frame, generating an event requires the value of

$$\frac{\mathsf{d}^4\sigma}{\mathsf{d}\mathsf{Q}^2\mathsf{d}\mathsf{W}\mathsf{d}\Omega^*_\pi} = \frac{\mathcal{F}^2}{(2\pi)^4} \frac{\mathsf{k}^*_\pi}{\mathsf{k}^2_l} \left[\mathsf{A} + \mathsf{B}\cos(\varphi^*_\pi) + \mathsf{C}\cos(2\varphi^*_\pi) + \mathsf{D}\sin(\varphi^*_\pi) + \mathsf{E}\sin(2\varphi^*_\pi)\right]$$

- $\rightarrow~$ that is **time consuming** and the MC sampling has an **efficiency** of 10 15 %
- Sampling Q², W from precomputed arrays allows to build the muon kinematics
- Then, $\cos \theta_{\pi}^*$ is given by the A function that is mostly **parabolic** (fit using 3-7 points)
- Finally, for other variables fixed, ϕ_{π}^* is given by an **analytical expression**

$$\frac{d^2\sigma}{dQ^2dW} \xrightarrow{\text{fix } Q^2, W}_{\text{numerical}} \xrightarrow{d^3\sigma} \frac{d^3\sigma}{dQ^2dWd\cos\theta_{\pi}^*} \xrightarrow{\text{fix } \cos\theta_{\pi}^*} \frac{d^4\sigma}{dQ^2dWd\Omega_{\pi}^*} \xrightarrow{\text{fix } \varphi_{\pi}^*}_{\text{analytical}} \text{ event...}$$

Performance

We propose:

- **4D algorithm**: sampling $(Q^2, W, \cos \theta_{\pi}^*, \phi_{\pi}^*)$ together (1 cross section calculation per accepted event)
- 3D algorithm: sampling (Q², W, cos θ_π^{*}) together + φ_π^{*} analytical
 (2 cross section calculation per accepted event)
- **2D algorithm:** sampling (Q^2, W) from tables + $\cos \theta_{\pi}^*$ from k points or from tables + ϕ_{π}^* analytical (k + 1 cross section calculation per accepted event)
- $\rightarrow \nu n$ scattering requires one more code evaluation because it has two channels (p + π^0 , n + π^+)

• Ghent LEM

- Free nucleon
- Fixed kinematics:

E = 1 GeV $Q^2 = 0.1 \text{ GeV}^2$ W = 1230 MeV

(total number of 10⁷ events over the whole phase space)

Kajetan Niewczas

Summary

- We have implemented the Ghent low energy model into NuWro
 - \rightarrow so far, only off the nucleon
- We have investigated various methods of optimization in SPP
 - \rightarrow different trade-offs between efficiency, precision and reliance on precomputed assets
- Our framework is based on kinematics, and therefore, model-independent
- The work is exhaustively presented in Ref. [Phys.Rev. D 103 (2021) 053003]

Angular distributions in Monte Carlo event generation of weak single-pion production

K. Niewczas[®],^{1,2,*} A. Nikolakopoulos,^{1,1} J. T. Sobczyk[®],² N. Jachowicz,¹ and R. González-Jiménez[®] ¹Department of Physics and Astronomy, Ghent University, Proefluinstraat 86, B-9000 Gent, Belgium ²Institute of Theoretical Physics, University of Worclaw, Plac Maxa Borna 9, 50-204 Wrocław, Poland ³Grupo de Física Nuclear, Departamento de Estructura de la Materia, Física Térnica y Electrónica, Universidad Compluense de Madrid and IPARCOS, CEI Moncloa, 28040 Madrid, Spain

(Received 16 November 2020; accepted 19 February 2021; published 12 March 2021)

Backup slides

Performance

$$S_N = N \cdot \tau \cdot (1+\alpha) + (\frac{N}{\varepsilon} - N) \cdot \tau = N \cdot \tau \cdot (\frac{1}{\varepsilon} + \alpha)$$

N - accepted events τ - trial event cost [arb. unit] ϵ - efficiency α - additional cost per accepted event [arb. unit]

r	nodel	σ [cm ²]	s _{1M} [cm ²]	τ	e	α	S_{1M}	model	σ [cm ²]	s1M[cm2]	τ	e	α	S_{1M}
4	D alg.	5.1724e-39	7.8e-42	8.01e-07	0.12	-	6.9	4D alg.	2.5105e-39	2.7e-42	1.83e-06	0.15	-	12.1
3D alg.		5.1661e-39	7.7e-42	8.02e-07	0.13	1.0	6.9	3D alg.	2.5095e-39	2.7e-42	1.83e-06	0.18	0.5	11.2
2D alg.	(k = 7)	5.1586e-39	7.5e-42	4.04e-08	0.16	143.9	6.1	\dot{b} $(k=7)$	2.5126e-39	2.6e-42	4.11e-08	0.21	169.4	7.2
	(k = 3)	5.1623e-39	7.5e-42	4.04e-08	0.16	72.0	3.2	$[\mathbf{v}]$ $(\mathbf{k}=3)$	2.5124e-39	2.6e-42	4.10e-08	0.21	85.1	3.7
	(table)	5.1613e-39	7.5e-42	4.03e-08	0.16	18.6	1.0	(table)	2.5116e-39	2.6e-42	4.08e-08	0.21	22.0	1.1

(a) E = 1.0 GeV neutrinos off proton target.

	model	σ [cm ²]	s _{1M} [cm ²]	τ	e	α	S_{1M}
4D alg.		6.8637e-39	11.2e-42	8.04e-07	0.08	-	9.9
3D alg.		6.8634e-39	10.8e-42	8.01e-07	0.10	1.0	8.8
2D alg.	(k = 7)	6.8327e-39	10.5e-42	3.98e-08	0.12	149.1	6.3
	(k = 3)	6.8510e-39	10.5e-42	4.08e-08	0.12	72.6	3.3
	(table)	6.8450e-39	10.5e-42	4.04e-08	0.12	19.0	1.1

(c) E = 2.5 GeV neutrinos off proton target.

(b) E = 1.0 GeV neutrinos off neutron target.

r	nodel	σ [cm ²]	s _{1M} [cm ²]	τ	e	α	S_{1M}
4D alg.		4.5860e-39	4.7e-42	1.84e-06	0.14	-	13.5
3D alg.		4.5851e-39	4.4e-42	1.83e-06	0.18	0.5	11.4
2D alg.	(k = 7)	4.5762e-39	4.2e-42	4.19e-08	0.20	169.6	7.3
	(k = 3)	4.5805e-39	4.2e-42	4.13e-08	0.20	86.0	3.8
	(table)	4.5809e-39	4.2e-42	4.12e-08	0.20	22.3	1.1

(d) E = 2.5 GeV neutrinos off neutron target.

(the values of τ are normalized to obtain $S_{1M}=1.0$ for the "2D alg. (table)" model)

- Free nucleon
- Fixed kinematics:
 - $\begin{array}{rcl} \mathsf{E} &=& 1 \ \text{GeV} \\ \mathsf{Q}^2 &=& 0.1 \ \text{GeV}^2 \\ & \lor & 0.5 \ \text{GeV}^2 \end{array}$

(total number of 10⁷ events over the whole phase space)

Kajetan Niewczas

NDNN NuSTEC Workshop

15 March 2021 11 / 15

• Ghent LEM

- Free nucleon
- Fixed kinematics:
 - $\begin{array}{rcl} \mathsf{E} &=& 1 \ \text{GeV} \\ \mathsf{Q}^2 &=& 0.1 \ \text{GeV}^2 \\ \mathcal{W} &=& 1230 \ \text{MeV} \\ & \lor 1270 \ \text{MeV} \\ & \lor 1310 \ \text{MeV} \end{array}$

(total number of 10⁷ events over the whole phase space)

• Ghent LEM

- Free nucleon
- Fixed kinematics:

E = 1 GeV

(total number of 10⁷ events over the whole phase space)

Kajetan Niewczas

NDNN NuSTEC Workshop

15 March 2021 13 / 15

• Ghent LEM

• Free nucleon

• Fixed kinematics:

E = 1 GeV $Q^2 = 0.1 \text{ GeV}^2$ W = 1230 MeV

(numerical results on a dense grid with selected kinematics)

Kajetan Niewczas

NDNN NuSTEC Workshop

15 March 2021 14 / 15

(total number of 10⁷ events over the whole phase space)

• Ghent LEM

• Free proton

• ANL / BNL data