Angular distributions in Monte Carlo event generation of weak single-pion production

Kajetan Niewczas

The physics problem

$$
v+N \rightarrow l^{-}+N^{\prime}+\pi
$$

- Single-pion production (SPP) is an essential dynamics for accelerator-based experiments
- There many measurements sensitive to pion angular distributions $\left(\cos \theta_{\pi}\right)$

$$
v+\mathrm{N} \rightarrow l^{-}+\left(\Delta \rightarrow \mathrm{N}^{\prime}+\pi\right)
$$

- NuWro models the Δ-resonance excitation \rightarrow it decays according to the ANL/BNL angular fits

$$
\frac{\mathrm{d}^{2} \sigma_{\Delta}}{\mathrm{dQ}^{2} \mathrm{~d} W} \rightarrow \frac{\mathrm{~d}^{4} \sigma_{\pi}}{\mathrm{dQ} \mathrm{Q}^{2} \mathrm{dW}} \times \frac{\mathrm{df}}{\Delta}\left(\mathrm{Q}^{2}\right) \frac{\mathrm{d} \Omega_{\pi}^{*}}{}
$$

- The nonresonant background is extrapolated from the DIS formalism into the lower regions of W, Q^{2}

FIG. 15. Distribution of events in the pion polar angle $\cos \theta$ for the final state $\mu^{-} p \pi^{+}$, with $M\left(p \pi^{+}\right)<1.4$ GeV . The curve is the area-normalized prediction of the Adler model.

Radecky et al. [ANL Collaboration], Phys.Rev. D 25 (1982) 1161

Pion angular distributions

- Default NuWro
- Free nucleon
- Fixed kinematics:

$$
\begin{aligned}
\mathrm{E} & =1 \mathrm{GeV} \\
\mathrm{Q}^{2} & =0.1 \mathrm{GeV}^{2} \\
\mathrm{~W} & =1230 \mathrm{MeV}
\end{aligned}
$$

(total number of 10^{7} events over the whole phase space)

Ghent low energy model of SPP

- The model of Ref. [R. González-Jiménez et al., Phys.Rev. D 95 (2017) 113007]
- The low-energy part based on the Valencia model

Resonances

P_{33} (1232), $P_{11}(1440), D_{13}(1520), S_{11}$ (1535)

based on [PRD 76 033005, PRD 87 113009, PRD 93 014016]

ChPT background

- Bottleneck for the implementation is the code execution time
- Adding a nuclear model will further increase the complexity of the implementation

Implementation

- Working in the Adler frame, generating an event requires the value of

$$
\frac{\mathrm{d}^{4} \sigma}{\mathrm{dQ} \mathrm{Q}^{2} \mathrm{dWd} \Omega_{\pi}^{*}}=\frac{\mathcal{F}^{2}}{(2 \pi)^{4}} \frac{\mathrm{k}_{\pi}^{*}}{\mathrm{k}_{\mathrm{l}}^{2}}\left[\mathrm{~A}+\mathrm{B} \cos \left(\phi_{\pi}^{*}\right)+\mathrm{C} \cos \left(2 \phi_{\pi}^{*}\right)+\mathrm{D} \sin \left(\phi_{\pi}^{*}\right)+\mathrm{E} \sin \left(2 \phi_{\pi}^{*}\right)\right]
$$

\rightarrow that is time consuming and the MC sampling has an efficiency of $10-15 \%$

- Sampling Q^{2}, W from precomputed arrays allows to build the muon kinematics
- Then, $\cos \theta_{\pi}^{*}$ is given by the A function that is mostly parabolic (fit using 3-7 points)
- Finally, for other variables fixed, ϕ_{π}^{*} is given by an analytical expression

$$
\frac{d^{2} \sigma}{d Q^{2} d W} \xrightarrow[\text { numerical }]{\text { fix } Q^{2}, W} \frac{d^{3} \sigma}{d Q^{2} d W d \cos \theta_{\pi}^{*}} \xrightarrow[\text { numerical / analytical }]{\text { fix } \cos \theta_{\pi}^{*}} \xrightarrow{d Q^{2} d W d \Omega_{\pi}^{*}} \xrightarrow[\text { analytical }]{d^{4} \sigma} \text { event... }
$$

Performance

We propose:

- 4D algorithm: sampling $\left(Q^{2}, W, \cos \theta_{\pi}^{*}, \phi_{\pi}^{*}\right)$ together (1 cross section calculation per accepted event)
- 3D algorithm: sampling $\left(Q^{2}, W, \cos \theta_{\pi}^{*}\right)$ together $+\phi_{\pi}^{*}$ analytical
(2 cross section calculation per accepted event)
- 2D algorithm: sampling $\left(Q^{2}, W\right)$ from tables $+\cos \theta_{\pi}^{*}$ from k points or from tables $+\phi_{\pi}^{*}$ analytical
($k+1$ cross section calculation per accepted event)
$\rightarrow v-n$ scattering requires one more code evaluation because it has two channels ($p+\pi^{0}, n+\pi^{+}$)

Pion angular distributions

- Ghent LEM

- Free nucleon
- Fixed kinematics:
$\mathrm{E}=1 \mathrm{GeV}$
$\mathrm{Q}^{2}=0.1 \mathrm{GeV}^{2}$
$\mathrm{W}=1230 \mathrm{MeV}$

(total number of 10^{7} events over the whole phase space)

Summary

- We have implemented the Ghent low energy model into NuWro
\rightarrow so far, only off the nucleon
- We have investigated various methods of optimization in SPP
\rightarrow different trade-offs between efficiency, precision and reliance on precomputed assets
- Our framework is based on kinematics, and therefore, model-independent
- The work is exhaustively presented in Ref. [Phys.Rev. D 103 (2021) 053003]

Angular distributions in Monte Carlo event generation of weak single-pion production
K. Niewczas©, ${ }^{1,2, *}$ A. Nikolakopoulos, ${ }^{1, \dagger}$ J. T. Sobczyk $\odot{ }^{2}{ }^{2}$ N. Jachowicz, ${ }^{1}$ and R. González-Jiménez \oplus^{3}
${ }^{1}$ Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium
${ }^{2}$ Institute of Theoretical Physics, University of Wrocław, Plac Maxa Borna 9, 50-204 Wrocław, Poland
${ }^{3}$ Grupo de Física Nuclear, Departamento de Estructura de la Materia,
Física Térmica y Electrónica, Universidad Complutense de Madrid and IPARCOS, CEI Moncloa, 28040 Madrid, Spain
(Q) (Received 16 November 2020; accepted 19 February 2021; published 12 March 2021)

Backup slides

Performance

$$
\begin{array}{r}
S_{N}=N \cdot \tau \cdot(1+\alpha)+\left(\frac{N}{\epsilon}-N\right) \cdot \tau=N \cdot \tau \cdot\left(\frac{1}{\epsilon}+\alpha\right) \\
N \text { - accepted events } \tau \text { - trial event cost [arb. unit] } \quad \epsilon-\text { efficiency } \alpha \text { - additional cost per accepted event [arb. unit] }
\end{array}
$$

	model	$\sigma\left[\mathrm{cm}^{2}\right]$	$\mathrm{s}_{1 \mathrm{M}}\left[\mathrm{cm}^{2}\right]$	τ	ϵ	α	$S_{1 M}$
	D alg.	$5.1724 \mathrm{e}-39$	$7.8 \mathrm{e}-42$	8.01e-07	0.12	-	6.9
$\begin{gathered} \text { io } \\ \stackrel{31}{\omega} \\ \stackrel{\rightharpoonup}{\omega} \end{gathered}$	D alg.	$5.1661 \mathrm{e}-39$	$7.7 \mathrm{e}-42$	$8.02 \mathrm{e}-07$	0.13	1.0	6.9
	($k=7$)	5.1586e-39	$7.5 \mathrm{e}-42$	$4.04 \mathrm{e}-08$	0.16	143.9	6.1
	($\mathrm{k}=3$)	5.1623e-39	$7.5 \mathrm{e}-42$	$4.04 \mathrm{e}-08$	0.16	72.0	3.2
	(table)	$5.1613 \mathrm{e}-39$	$7.5 \mathrm{e}-42$	$4.03 \mathrm{e}-08$	0.16	18.6	1.0

(a) $\mathrm{E}=1.0 \mathrm{GeV}$ neutrinos off proton target.

model		$\sigma\left[\mathrm{cm}^{2}\right]$	$\mathrm{s}_{1 \mathrm{M}}\left[\mathrm{cm}^{2}\right]$	τ	ϵ	α	$\mathrm{S}_{1 \mathrm{M}}$
	alg.	$6.8637 \mathrm{e}-39$	$11.2 \mathrm{e}-42$	8.04e-07	0.08	-	9.9
	alg.	$6.8634 \mathrm{e}-39$	10.8e-42	$8.01 \mathrm{e}-07$	0.10	1.0	8.8
	$(k=7)$	$6.8327 \mathrm{e}-39$	10.5e-42	$3.98 \mathrm{e}-08$	0.12	149.1	6.3
	$(k=3)$	$6.8510 \mathrm{e}-39$	$10.5 \mathrm{e}-42$	$4.08 \mathrm{e}-08$	0.12	72.6	3.3
	(table)	$6.8450 \mathrm{e}-39$	10.5e-42	$4.04 \mathrm{e}-08$	0.12	19.0	1.1

model		$\sigma\left[\mathrm{cm}^{2}\right]$	$\mathrm{s}_{1 \mathrm{M}}\left[\mathrm{cm}^{2}\right]$	τ	ϵ	α	$\mathrm{S}_{1 \mathrm{M}}$
	alg.	$2.5105 \mathrm{e}-39$	2.7e-42	1.83e-06	0.15	-	12.1
	alg.	$2.5095 \mathrm{e}-39$	$2.7 \mathrm{e}-42$	1.83e-06	0.18	0.5	11.2
	($k=7$)	$2.5126 \mathrm{e}-39$	$2.6 \mathrm{e}-42$	$4.11 \mathrm{e}-08$	0.21	169.4	7.2
స	($\mathrm{k}=3$)	$2.5124 \mathrm{e}-39$	$2.6 \mathrm{e}-42$	$4.10 \mathrm{e}-08$	0.21	85.1	3.7
入े	(table)	$2.5116 \mathrm{e}-39$	$2.6 \mathrm{e}-42$	$4.08 \mathrm{e}-08$	0.21	22.0	1.1

(b) $\mathrm{E}=1.0 \mathrm{GeV}$ neutrinos off neutron target.

model		$\sigma\left[\mathrm{cm}^{2}\right]$	$\mathrm{s}_{1 \mathrm{M}}\left[\mathrm{cm}^{2}\right]$	τ	ϵ	α	$S_{1 M}$
$\begin{aligned} & \text { ๗0 } \\ & \stackrel{1}{\tau} \\ & \stackrel{1}{2} \end{aligned}$	alg.	$4.5860 \mathrm{e}-39$	$4.7 \mathrm{e}-42$	1.84e-06	0.14	-	13.5
	alg.	$4.5851 \mathrm{e}-39$	$4.4 \mathrm{e}-42$	$1.83 \mathrm{e}-06$	0.18	0.5	11.4
	($\mathrm{k}=7$)	$4.5762 \mathrm{e}-39$	$4.2 \mathrm{e}-42$	$4.19 \mathrm{e}-08$	0.20	169.6	7.3
	($\mathrm{k}=3$)	$4.5805 \mathrm{e}-39$	$4.2 \mathrm{e}-42$	$4.13 \mathrm{e}-08$	0.20	86.0	3.8
	(table)	$4.5809 \mathrm{e}-39$	$4.2 \mathrm{e}-42$	$4.12 \mathrm{e}-08$	0.20	22.3	1.1

(c) $\mathrm{E}=2.5 \mathrm{GeV}$ neutrinos off proton target.
(d) $\mathrm{E}=2.5 \mathrm{GeV}$ neutrinos off neutron target.
(the values of τ are normalized to obtain $\mathrm{S}_{1 \mathrm{M}}=1.0$ for the "2D alg. (table)" model)

Pion angular distributions

- Ghent LEM

- Free nucleon
- Fixed kinematics:

$$
\begin{aligned}
\mathrm{E} & =1 \mathrm{GeV} \\
\mathrm{Q}^{2} & =0.1 \mathrm{GeV}^{2} \\
& \vee 0.5 \mathrm{GeV}^{2}
\end{aligned}
$$

Pion angular distributions

- Ghent LEM
- Free nucleon
- Fixed kinematics:
$\mathrm{E}=1 \mathrm{GeV}$
$\mathrm{Q}^{2}=0.1 \mathrm{GeV}^{2}$
$W=1230 \mathrm{MeV}$
$\checkmark 1270 \mathrm{MeV}$
$\vee 1310 \mathrm{MeV}$

(total number of 10^{7} events over the whole phase space)

Pion angular distributions

- Ghent LEM
- Free nucleon
- Fixed kinematics:
$\mathrm{E}=1 \mathrm{GeV}$

Pion angular distributions

- Ghent LEM

- Free nucleon
- Fixed kinematics:

$$
\begin{aligned}
\mathrm{E} & =1 \mathrm{GeV} \\
\mathrm{Q}^{2} & =0.1 \mathrm{GeV}^{2} \\
\mathrm{~W} & =1230 \mathrm{MeV}
\end{aligned}
$$

(numerical results on a dense grid with selected kinematics)

Pion angular distributions

- Ghent LEM
- Free proton
- ANL / BNL data

(total number of 10^{7} events over the whole phase space)

