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The physics problem
ν+N→ l− +N′ + π

◦ Single-pion production (SPP) is an essential
dynamics for accelerator-based experiments

◦ There many measurements sensitive to pion
angular distributions (cos θπ)

ν+N→ l− + (∆→ N′ + π)

◦ NuWromodels the ∆-resonance excitation
→ it decays according to the ANL/BNL angular fits

d2σ∆
dQ2dW

→ d4σπ
dQ2dW

× df∆(Q2)
dΩ∗π

◦ The nonresonant background is extrapolated from
the DIS formalism into the lower regions ofW, Q2

Single-pion production o� the nucleon
To produce an event, one needs
information about the produced pion

Delta decays in the hadronic CMS:

d2��

dQ2dW
! d4�⇡

dQ2dW
⇥ df�(Q2)

d⌦⇤
⇡

Pion angular distributions are essential
to generate the kinematics

In NuWro, it is taken from experimental
results (ANL or BNL):
S.J. Barish et al., Phys.Rev. D19 (1979) 2511
G.M. Radecky et al., Phys.Rev. D25 (1982) 1161
T. Kitagaki et al., Phys.Rev. D34 (1986) 2554
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Radecky et al. [ANL Collaboration], PRD 25 (1982) 1161
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Pion angular distributions

◦ Default NuWro

◦ Free nucleon

◦ Fixed kinematics:

E = 1 GeV
Q2 = 0.1 GeV2

W = 1230 MeV

dσ / dW dQ2 dcosπ
*
 dφπ

*
 [10-47 cm2
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(total number of 107 events over the whole phase space)
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Ghent low energy model of SPP
◦ The model of Ref. [R. González-Jiménez et al., Phys.Rev. D 95 (2017) 113007]

◦ The low-energy part based on the Valencia model

Resonances
P33(1232), P11(1440),D13(1520), S11(1535)

Ghent Low Energy Model

• The model of Ref. [R. González-Jiménez et al., PRD 95 (2017) 113007]

• The low-energy part based on the Valencia model

Resonances
P33(1232), P11(1440), D13(1520), S11(1535)
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FIG. 4. (Color online) Each colored area represents the
�t region allowed by energy-momentum conservation
for fixed (�i, �f ) values: �i = 1 (red), 4.5 (green)
and 10 GeV (gray). The top panel corresponds to
�f = 4 deg and the bottom panel to �f = 170 deg.
The �t-maximum (dashed) and �t-minimum (solid)
lines are solutions of Eq. 10 for cos ��� = �1 and
cos ��� = 1, respectively. The blue solid line is the
curve corresponding to �t = W 2.

III. LOW ENERGY MODEL:
RESONANCES AND CHPT BACKGROUND

In this section, we describe the low-energy
model. It contains the s- and u-channel diagrams
of the P33(1232) (Delta) and D13(1520) resonances
and the background terms from the ChPT �N -
Lagrangian (Appendix A), as presented in Refs. [1,
30]. In addition, we also consider the s- and u-
channel contributions from the spin-1/2 resonances
S11(1535) and P11(1440). The corresponding
Feynman diagrams are shown in Figs. 5 and 6. In
the following, we summarize the expressions for
the hadronic current operators (see Eq. 7) for each
contribution.

The hadronic current operators for the back-
ground terms of Fig. 5 are:

Oµ
NP = iI �gA�

2f�
/K��

5
/Ks + M

s � M2
�̂µ

QNN , (12)

with Kµ
s = Pµ + Qµ, and �̂µ

QNN (Qµ) given in

Q
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FIG. 5. ChPT-background contributions (from left to
right and top to bottom): s channel (nucleon pole,
NP ), u channel (cross-nucleon pole, CNP ), contact
term (CT ), pion pole (PP ), and t channel (pion-in-
flight term, PF ).
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FIG. 6. s- and u-channel diagrams for the nucleon
resonances.

Eqs. A15, A20 and A29,

Oµ
CNP = iI �gA�

2f�
�̂µ

QNN

/Ku + M

u � M2
/K��

5 , (13)

with Kµ
u = Pµ � Kµ

� and u = K2
u,

Oµ
PF = iI FPF (Q2)

�gA�
2f�

Kµ
� � Kµ

t

t � m2
�

/Kt�
5 ,(14)

with Kµ
t = Qµ � Kµ

� ,

Oµ
PP = iI F�(t)

�1�
2f�

Qµ

Q2 � m2
�

�
/Q + /K�

�

2
, (15)

Oµ
CT = Oµ

CTv + Oµ
CTa with the axial (CTa) and a

vector (CTv) contributions given by

Oµ
CTa = iI F�(t)

1�
2f�

�µ , (16)

Oµ
CTv = iI FCT (Q2)

�gA�
2f�

�µ�5 . (17)

I is the isospin coe�cient of each diagram (see
Tables I and II).

We have introduced the nucleon form factors
(F p,n

1,2 for neutral-current interactions and FV
1,2 for

CC interaction) in the NP and CNP amplitudes
(see Eqs. A15, A20 and A29). Therefore, to
respect conservation of vector current (CVC) we
have included the isovector nucleon form factors,
FV

1,2, in the PF and CTv amplitudes [1]:

FPF (Q2) = FCT (Q2) = FV
1 (Q2)

= F p
1 (Q2) � Fn

1 (Q2) . (18)

based on [PRD 76 033005, PRD 87 113009, PRD 93 014016]
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cos ��� = 1, respectively. The blue solid line is the
curve corresponding to �t = W 2.
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Eqs. A15, A20 and A29,

Oµ
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2f�
�̂µ

QNN

/Ku + M

u � M2
/K��

5 , (13)

with Kµ
u = Pµ � Kµ

� and u = K2
u,

Oµ
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�gA�
2f�
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t
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, (15)

Oµ
CT = Oµ

CTv + Oµ
CTa with the axial (CTa) and a

vector (CTv) contributions given by

Oµ
CTa = iI F�(t)

1�
2f�

�µ , (16)
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CTv = iI FCT (Q2)

�gA�
2f�

�µ�5 . (17)

I is the isospin coe�cient of each diagram (see
Tables I and II).

We have introduced the nucleon form factors
(F p,n

1,2 for neutral-current interactions and FV
1,2 for

CC interaction) in the NP and CNP amplitudes
(see Eqs. A15, A20 and A29). Therefore, to
respect conservation of vector current (CVC) we
have included the isovector nucleon form factors,
FV

1,2, in the PF and CTv amplitudes [1]:

FPF (Q2) = FCT (Q2) = FV
1 (Q2)

= F p
1 (Q2) � Fn

1 (Q2) . (18)

� Bottleneck for the implementation is the code execution time

� Adding a nuclear model will further slow down the implementation
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I is the isospin coe�cient of each diagram (see
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We have introduced the nucleon form factors
(F p,n

1,2 for neutral-current interactions and FV
1,2 for

CC interaction) in the NP and CNP amplitudes
(see Eqs. A15, A20 and A29). Therefore, to
respect conservation of vector current (CVC) we
have included the isovector nucleon form factors,
FV

1,2, in the PF and CTv amplitudes [1]:

FPF (Q2) = FCT (Q2) = FV
1 (Q2)

= F p
1 (Q2) � Fn

1 (Q2) . (18)

� Bottleneck for the implementation is the code execution time

� Adding a nuclear model will further slow down the implementation
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◦ Bottleneck for the implementation is the code execution time

◦ Adding a nuclear model will further increase the complexity of the implementation
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Implementation
◦ Working in the Adler frame, generating an event requires the value of

d4σ
dQ2dWdΩ∗π

=
F2

(2π)4
k∗π
k2l

[A+ B cos(φ∗π) + C cos(2φ∗π) +D sin(φ∗π) + E sin(2φ∗π)]

→ that is time consuming and the MC sampling has an efficiency of 10− 15%

• Sampling Q2,W from precomputed arrays allows to build the muon kinematics

• Then, cos θ∗π is given by the A function that is mostly parabolic (fit using 3-7 points)

• Finally, for other variables fixed, φ∗π is given by an analytical expression

d2σ
dQ2dW

fixQ2,W−−−−−−→
numerical

d3σ
dQ2dWd cos θ∗π

fix cosθ∗
π−−−−−−−−−−−−→

numerical / analytical

d4σ
dQ2dWdΩ∗π

fixφ∗
π−−−−−→

analytical
event...
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Performance
We propose:

◦ 4D algorithm: sampling (Q2,W, cos θ∗π, φ∗π) together
(1 cross section calculation per accepted event)

◦ 3D algorithm: sampling (Q2,W, cos θ∗π) together
+ φ∗π analytical

(2 cross section calculation per accepted event)

◦ 2D algorithm: sampling (Q2,W) from tables
+ cos θ∗π from k points or from tables
+ φ∗π analytical

(k+ 1 cross section calculation per accepted event)

→ ν− n scattering requires one more code evaluation
because it has two channels (p+ π0, n+ π+)
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Pion angular distributions

◦ Ghent LEM

◦ Free nucleon

◦ Fixed kinematics:

E = 1 GeV
Q2 = 0.1 GeV2

W = 1230 MeV
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Summary
◦ We have implemented the Ghent low energy model into NuWro
→ so far, only off the nucleon

◦ We have investigated various methods of optimization in SPP
→ different trade-offs between efficiency, precision and reliance on precomputed assets

◦ Our framework is based on kinematics, and therefore, model-independent

◦ The work is exhaustively presented in Ref. [Phys.Rev. D 103 (2021) 053003]

 

Angular distributions in Monte Carlo event generation
of weak single-pion production

K. Niewczas ,1,2,* A. Nikolakopoulos,1,† J. T. Sobczyk ,2 N. Jachowicz,1 and R. González-Jiménez 3
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One of the substantial sources of systematic errors in neutrino oscillation experiments that utilize
neutrinos from accelerator sources stems from a lack of precision in modeling single-pion production
(SPP). Oscillation analyses rely on Monte Carlo event generators (MC), providing theoretical predictions
of neutrino interactions on nuclear targets. Pions produced in these processes provide a significant fraction
of oscillation signal and background on both elementary scattering and detector simulation levels. Thus, it
is of critical importance to develop techniques that will allow us to accommodate state-of-the-art theoretical
models describing SPP into MCs. In this work, we investigate various algorithms to implement single-pion
production models in Monte Carlo event generators. Based on comparison studies, we propose a novel
implementation strategy that combines satisfactory efficiency with high precision in reproducing details of
theoretical models predictions, including pion angular distributions. The proposed implementation is
model-independent, thereby providing a framework that can include any model for SPP. We have tested the
new algorithm with the Ghent low energy model for single-pion production implemented in the NuWro
Monte Carlo event generator.

DOI: 10.1103/PhysRevD.103.053003

I. INTRODUCTION

Single-pion production (SPP) is one of the main
reaction channels relevant for accelerator-based neutrino
experiments, where neutrino energies range from a
couple of hundred MeVs up to several GeVs [1].
Indeed, in experiments with detectors using Cherenkov
radiation, such as T2K [2] and MiniBooNE [3], it is
challenging to distinguish neutral pions from electrons.
This makes their production the main background for the
detection of low-energy electrons. A good understanding
of this background is essential for future CP violation
measurements in the Hyper-Kamiokande experiment [4]
and in attempts to understand the excess of νe-like events
reported by the MiniBooNE collaboration [5]. Moreover,
produced pions issue a significant background for other
neutrino experiments such as MicroBooNE [6], as it is

challenging to distinguish charged pions from muons in
Liquid Argon Time Projection Chambers. Regarding
oscillation analyses, SPP also contributes to the com-
monly used CC0π experimental topology [7], provided
that the pions get reabsorbed in the nuclear medium or
remain otherwise undetected. Furthermore, this interac-
tion channel is itself a part of the signal for oscillation
experiments especially with higher-energy neutrino
beams such as NOvA [8] and DUNE [9], but also for
T2K [10].
Over the past couple of years, the MINERvA, T2K,

ArgoNeuT, and MiniBooNE experiments [11–16] have
collected an increasingly large dataset for (anti-)neutrino-
induced single-pion production on nuclear targets.
Subsequently, it has been compared to predictions from
several models, revealing significant differences in their
description of the data. Moreover, there are apparent
tensions between the MiniBooNE, T2K, and MINERvA
SPP measurements [17–20] themselves. Reference [21]
showed that a simultaneous agreement between the results
of the ANL and BNL bubble chamber data and the
MINERvA experiment could not be reached. Further-
more, it was not possible to provide a consistent description
using a single parameter tune for the different SPP channels
measured by the latter.
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Performance
SN = N · τ · (1+ α) + (

N

ε
−N) · τ = N · τ · (1

ε
+ α)

N - accepted events τ - trial event cost [arb. unit] ε - efficiency α - additional cost per accepted event [arb. unit]

model σ[cm2] s1M[cm2] τ ε α S1M
4D alg. 5.1724e-39 7.8e-42 8.01e-07 0.12 - 6.9
3D alg. 5.1661e-39 7.7e-42 8.02e-07 0.13 1.0 6.9

2D
al
g. (k = 7) 5.1586e-39 7.5e-42 4.04e-08 0.16 143.9 6.1

(k = 3) 5.1623e-39 7.5e-42 4.04e-08 0.16 72.0 3.2
(table) 5.1613e-39 7.5e-42 4.03e-08 0.16 18.6 1.0

(a) E = 1.0 GeV neutrinos off proton target.

model σ[cm2] s1M[cm2] τ ε α S1M
4D alg. 2.5105e-39 2.7e-42 1.83e-06 0.15 - 12.1
3D alg. 2.5095e-39 2.7e-42 1.83e-06 0.18 0.5 11.2

2D
al
g. (k = 7) 2.5126e-39 2.6e-42 4.11e-08 0.21 169.4 7.2

(k = 3) 2.5124e-39 2.6e-42 4.10e-08 0.21 85.1 3.7
(table) 2.5116e-39 2.6e-42 4.08e-08 0.21 22.0 1.1

(b) E = 1.0 GeV neutrinos off neutron target.

model σ[cm2] s1M[cm2] τ ε α S1M
4D alg. 6.8637e-39 11.2e-42 8.04e-07 0.08 - 9.9
3D alg. 6.8634e-39 10.8e-42 8.01e-07 0.10 1.0 8.8

2D
al
g. (k = 7) 6.8327e-39 10.5e-42 3.98e-08 0.12 149.1 6.3

(k = 3) 6.8510e-39 10.5e-42 4.08e-08 0.12 72.6 3.3
(table) 6.8450e-39 10.5e-42 4.04e-08 0.12 19.0 1.1

(c) E = 2.5 GeV neutrinos off proton target.

model σ[cm2] s1M[cm2] τ ε α S1M
4D alg. 4.5860e-39 4.7e-42 1.84e-06 0.14 - 13.5
3D alg. 4.5851e-39 4.4e-42 1.83e-06 0.18 0.5 11.4

2D
al
g. (k = 7) 4.5762e-39 4.2e-42 4.19e-08 0.20 169.6 7.3

(k = 3) 4.5805e-39 4.2e-42 4.13e-08 0.20 86.0 3.8
(table) 4.5809e-39 4.2e-42 4.12e-08 0.20 22.3 1.1

(d) E = 2.5 GeV neutrinos off neutron target.

(the values of τ are normalized to obtain S1M = 1.0 for the "2D alg. (table)" model)
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Pion angular distributions

◦ Ghent LEM

◦ Free nucleon

◦ Fixed kinematics:

E = 1 GeV
Q2 = 0.1 GeV2

∨ 0.5 GeV2
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(total number of 107 events over the whole phase space)
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Pion angular distributions

◦ Ghent LEM

◦ Free nucleon

◦ Fixed kinematics:

E = 1 GeV
Q2 = 0.1 GeV2

W = 1230 MeV
∨ 1270 MeV
∨ 1310 MeV
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Pion angular distributions

◦ Ghent LEM

◦ Free nucleon

◦ Fixed kinematics:

E = 1 GeV
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Pion angular distributions

◦ Ghent LEM

◦ Free nucleon

◦ Fixed kinematics:

E = 1 GeV
Q2 = 0.1 GeV2

W = 1230 MeV
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Pion angular distributions

◦ Ghent LEM

◦ Free proton

◦ ANL / BNL data
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