NEW DIRECTIONS IN NEUTRINO-NUCLEUS SCATTERING (NDNN)

SCATTERING OF MONO-ENERGETIC KAON DECAY-AT-REST NEUTRINOS WITH NUCLEI

A. Nikolakopoulos, J. Spitz, V. Pandey, N. Jachowicz

KAON DECAY-AT-REST NEUTRINOS

A stopped Kaon that decays at rest in neutrino beamline absorbers yields monoenergetic u_{μ} with E = 236 MeV

Phase space for CC scattering of u_{μ} from KDAR

Fixed E_{ν} allows to determine transferred energy and momentum ω and q

Transition region between Low-energy and QE regimes

- $Q^2 \approx 0.01 0.2 \, {\rm GeV}^2$
- Significant effect of Pauli-blocking (cross-hatched region)
- Threshold effects
- QE peak (orange line) for backward muons
- Large amount of (e, e') data available

ELECTRON SCATTERING OFF ¹²C

CRPA blue band HF red lines

[PRC92, 024606,arXiv:2010.05794]

Validate models with (e, e')

- Test of nuclear model
- Direct test of the vector current
- Test of A-dependence

Combined analysis of (e, e')and KDAR data in terms of ω and $q \rightarrow$ clean view of axial current (separate 2p2h)

ELECTRON SCATTERING OFF ⁴⁰CA

CRPA blue band HF red lines

[PRC92, 024606,arXiv:2010.05794]

Validate models with (e, e')

- Test of nuclear model
- Direct test of the vector current
- Test of A-dependence

Combined analysis of (e, e')and KDAR data in terms of ω and $q \rightarrow$ clean view of axial current (separate 2p2h)

Measurements of KDAR u_{μ} cross section

First measurement of KDAR ν_{μ} cross section in MiniBooNE [PRL120, 141802]

- Extracted *T_µ* shape dependent on threshold
- Large allowed region
- Hard to separate KDAR from π -in-flight

Possible future measurements:

- MicroBooNE, ICARUS, ⁴⁰Ar, broad π-in-flight background
- JSNS² at J-PARC MLF, ¹²C low background but limited capabilities of measuring μ kinematics.

 Shape only comparison to MiniBooNE data www-boone.fnal.gov/for_ physicists/data_release/kdar/ I

Measurements of KDAR u_{μ} cross section

First measurement of KDAR ν_{μ} cross section in MiniBooNE [PRL120, 141802]

- Shape-only comparison of different models
- Not possible to discriminate between models due to limited statistics

From inclusive standpoint: even modest resolution of $\cos \theta_{\mu}$ ($\leftrightarrow q$) can be useful JSNS² particularly sensitive to hadronic + lepton energy (\leftrightarrow missing energy)

Measurements of KDAR u_{μ} cross section

First measurement of KDAR ν_{μ} cross section in MiniBooNE [PRL120, 141802]

- Shape-only comparison of different models
- Not possible to discriminate between models due to limited statistics

From inclusive standpoint: even modest resolution of $\cos \theta_{\mu}$ ($\leftrightarrow q$) can be useful JSNS² particularly sensitive to hadronic + lepton energy (\leftrightarrow missing energy)

8/12

IMPLICATIONS FOR OSCILLATION EXPERIMENTS

- In [arxiv:2010.05794] discussion of proposed oscillation and exotic search experiments which will rely on KDAR ν_{μ} and ν_{e} from $\nu_{\mu} \rightarrow \nu_{e}$ oscillation. These require input for $E_{\nu} = 236 \text{ MeV}$ cross sections
- On the other hand: KDAR ν_μ cross section could provide a clean input on effective treatments in low Q²-regime for oscillation experiments in 100s of MeV range (e.g. MiniBooNE, T2K, ...)
- Constraining model by ν_μ events in same experiment (possibly ND) allows to absorb some flux uncertainty BUT ...
 - \rightarrow non-trivial overlap of different interaction mechanisms
 - \rightarrow Oscillated signal not necessarily sensitive to same energy region

MiniBooNE fit [PRL 121, 221801]

IMPLICATIONS FOR OSCILLATION EXPERIMENTS

- Oscillated signal not necessarily sensitive to same energy region
- MiniBooNE analysis through effective ν_e flux: sensitive to low energy region

flux from best fit in MB peaks at low energy

CONCLUSIONS

- \blacksquare 236 MeV ν_{μ} cross sections for $^{12}{\rm C}$ and $^{40}{\rm Ar}$ can be measured by JSNS² and MicroBooNE
- Non-trivial kinematic region affected by Pauli-blocking, threshold effects, nuclear uncertainties, ... tabularized CRPA responses can be made for several nuclei
- Large overlap with (e, e') data for multiple nuclei (¹²C, ⁴⁰Ca, ⁴⁸Ca, ⁵⁶Fe, ...) a consistent combined analysis is sensitive to neutrino specific physics
- Relatively 'clean' kinematic region: no overlap of many mechanisms, can mostly be separated in ω and q. Could inform effective treatments of low-Q² region.

NEW DIRECTIONS IN NEUTRINO-NUCLEUS SCATTERING (NDNN)

SCATTERING OF MONO-ENERGETIC KAON DECAY-AT-REST NEUTRINOS WITH NUCLEI

A. Nikolakopoulos, J. Spitz, V. Pandey, N. Jachowicz

