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MOTIVATION

ab initio methods can give more 
insight into  -nucleus interactionν

✓ Recent 
developments in 
many-body nuclear 
methods

✓ Neutrino programs 
use as targets 
medium-size nuclei 
(16O, 40Ar)

Hergert A Guided Tour of Ab Initio Nuclear Many-Body Theory

Figure 1. Progress in ab initio nuclear structure calculations over the past decade. The blue arrow
indicates nuclei that will become accessible with new advances for open-shell nuclei in the very near
term (see Sec. 2.3).

is poised to be filled in rapidly [28]. Development of the no-core versions of these methods has
continued as well, and made direct calculations for intrinsically deformed nuclei possible [29].

The growing reach of ab initio many-body methods made it possible to confront chiral NN+3N
forces with a wealth of experimental data, revealing shortcomings of those interactions and sparking
new e↵orts toward their improvement. There were other surprises along the way, some good, some
bad. Due to the benchmarking capabilities and further developments in many-body theory, we are
now often able to understand the reasons for the failure of certain calculations (see, e.g., Ref. [27]) —
hindsight is 2020, as they say1.

The present collection of Frontiers in Physics contributions provides us with a timely and welcome
opportunity to attempt a look back at some of the impressive results from the past decade and the
developments that brought us here, as well as a look ahead at the challenges to come as we enter a
new decade.

Let us conclude this section with a brief outline of the main body of this work. In Section 2, I
will discuss the main ingredients of modern nuclear many-body calculations: The input interactions
from chiral EFT, the application of the SRG to process Hamiltonians and operators, and eventually
a variety of many-body methods that are used to solve the Schrödinger equation. I will review key
ideas but keep technical details to a minimum, touching only upon aspects that will become relevant
again later on. Section 3 presents selected applications from the past decade, and discusses both

1 This exhausts my contractually allowed contingent of 2020 vision puns, I swear.

This is a provisional file, not the final typeset article 2

H. Hergert, Front.in Phys. 8 (2020) 379
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NUCLEAR RESPONSE

 3

nuclear 
responses

 Jμ = (ρ, ⃗j)|Ψ⟩

σ ∝ Lμν Rμν
lepton 
tensor

γ, W± , Z0

 
 Rμν(ω, q) = ∑

f
⟨Ψ |J†

μ(q) |Ψf⟩⟨Ψf |Jν(q) |Ψ⟩δ(E0 + ω − Ef )



ELECTRONS FOR NEUTRINOS

✓ much more precise data

✓ we can get access to   and   separately (Rosenbluth separation)

✓ experimental programs of electron scattering in JLab, MAMI, MESA

RL RT

We will start with longitudinal response

dσ
dωdq ν/ν̄

= σ0(υCCRCC + υCLRCL + υLLRLL + υTRT ± υT′�RT′�)
dσ

dωdq e
= σM(υLRL + υTRT)
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AB INITIO NUCLEAR THEORY 
FOR NEUTRINOS

 Jμ = (ρ, ⃗j)

 ℋ |Ψ⟩ = E |Ψ⟩

✓ Nuclear Hamiltonian

✓ Electroweak currents

✓ Many-body method
) = ⟨Ψm |Jμ |Ψn⟩
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NUCLEAR HAMILTONIAN

• Chiral Hamiltonians 
exploiting chiral symmetry 
(QCD);   degrees 
of freedom

• counting scheme in  

• low energy constants 
(LEC) fit to data

• uncertainty assessment

π, N, (Δ)

( Q
Λ )

n

ℋ = ∑
i

p2
i

2m
+ ∑

i< j
vij + ∑

i< j< k
Vijk + . . .

n= 0

n= 2

n= 3

n= 4
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ELECTROWEAK CURRENTS

J = ∑
i

ji + ∑
i< j

jij + . . .

7

the comparison with Refs. [18] and [7] and helps one to
assess of the size of the contributions of the various terms
in the current operator.

In Table I, we show the CC- and NC-induced inclusive
⌫̄/⌫-d cross sections obtained using the EM500 interac-
tion and current operators of various �EFT orders. The
EM500 interactions contain all e↵ects that are suppressed
by factors of up to (Q/⇤b)4 compared to the leading order
�EFT Hamiltonian. With wave functions obtained by
solving the partial wave Lippmann-Schwinger equations
for this interaction, we vary the order of the weak current
operator at (Q/⇤b)�3,�2,�1,0 to study the order-by-order
convergence of the current in the ⌫̄/⌫-d cross sections.
With increasing energy, the 1B Fermi and Gamow-Teller
operators, which contribute at the leading (Q/⇤b)�3 or-
der, underpredict (overpredict) the ⌫-d (⌫̄-d) cross sec-
tions compared to values obtained with operators up to
(Q/⇤b)0 order. The contributions of the 1B convection
and spin-magnetization currents, which enter at order
(Q/⇤b)�2, amount to about 30% in the ✏ ⇡ 100 MeV re-
gion. The pion-exchange 2B contributions to the vector
current and axial charge operators, which formally enter
at order (Q/⇤b)�1, are smaller than the axial 2B cur-
rent contributions at (Q/⇤b)0. While this is contrary to
expectations from �EFT power counting, a similar con-
vergence pattern was also found by Ref. [18]. Overall,
the inclusion of 2B currents increases the cross section
in all of the four reaction channels by about 3-4% at
✏ ⇡ 100 MeV, which is consistent with the results of
Ref. [18].

Agreement is seen between our 1B results and those of
Ref. [7]. The slight di↵erence of about 1% or less is due to
the AV18 [51] wave functions used by Ref. [7], since the
�EFT 1B operators used in this work are the same as the
phenomenological operators employed in that study. We
agree also within approximately 1% with Ref. [18], which
uses the same interactions for the wave functions but also
includes the (Q/⇤b)1 current operators not considered in
this work.

B. Uncertainty estimates

We now estimate, for the first time on this observable,
the uncertainty from the potential by using the NNLOsim

family of 42 interactions calculated up to the third chiral
order [19, 20]. These have been fitted at seven di↵erent
values of the regulator cuto↵ ⇤ in the 450-600 MeV in-
terval to six di↵erent Tlab ranges in the NN scattering
database. The LECs in this family of interactions were
fitted simultaneously to ⇡N and selected NN scattering
data, the energies and charge radii of 2,3H and 3He, the
quadrupole moment of 2H, as well as the �-decay width of
3H. All of these interactions have the correct long-range
properties, and the di↵erences between them provide a
conservative estimate of the uncertainty due to the short-
distance model ambiguity of �EFT.

In Fig. 1 we show, along with the EM500 curves, the

FIG. 1. (Color online) The NC and CC ⌫̄/⌫-d inclusive cross
sections with the EM500 (black, dashed) and NNLOsim (light
band) interactions.

cross sections calculated using the NNLOsim interactions
as bands. The widths of the bands are estimates of the
uncertainties due to the sensitivity to the �EFT cut-
o↵ and variations in the pool of fit data used to con-
strain the LECs, including ĉ1,3,4 and d̂R in the currents.
These widths grow with ✏ and amount to about 3% at
✏ ⇡ 100 MeV for all of the four processes. They are thus
similar in size to the e↵ect of 2B currents. The interac-
tions and currents in the NNLOsim results are of the same
chiral order, i.e., both of them include all corrections that
are suppressed by factors of up to (Q/⇤b)3 compared to
the leading order. Based on the observed convergence
of the cross sections in Table I, and on the results of
Ref. [18] for higher-order current contributions, we antic-
ipate the size of neglected terms in the chiral expansion of
the weak current operator to be 1% at ✏ ⇡ 100 MeV. This
is smaller than the NNLOsim uncertainties, which are—
in principle as well as in practice— similar in size to the
(Q/⇤b)0 current contributions which we have included
in our calculations. We therefore assign a conservative
estimate of 3% to the nuclear structure uncertainties in
the cross section at 100 MeV ⌫̄/⌫ energy. We now turn
to the question of the sensitivity of these results to the
single-nucleon axial form factor. Ref. [52] analyzed the
world data for ⌫d scattering by employing the calcula-
tions of Refs. [7, 53] to obtain hr2Ai = 0.46 ± 0.22 fm2.

B. Acharya,  S. Bacca
Phys.Rev.C 101 (2020) 1, 015505

ν(ν̄) + d → e± + X

known to give significant 
contribution for neutrino-

nucleus scattering

Multipole decomposition for 
1- and 2-body EW currents

NN

NNγ, W ± , Z0

N

Nγ, W ± , Z0
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Current decomposition into multipoles needed for 
various ab initio methods: Coupled Cluster, No Core Shell 

Model, In-Medium Similarity Renormalization Group

ν(ν̄) + d → ν(ν̄) + X



COUPLED CLUSTER METHOD
Reference state (Hartree-Fock):      |Ψ⟩

 e− TℋeT |Ψ⟩ ≡ℋ̄ |Ψ⟩ = E |Ψ⟩

Expansion:  T = ∑ ti
aa†

aai + ∑ tij
aba

†
aa†

b aiaj + . . .

Include correlations through   operator eT

similarity transformed 
Hamiltonian (non-Hermitian)

singles doubles

 coefficients obtained 
through coupled cluster 

equations

←
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COUPLED CLUSTER METHOD

✓Controlled approximation through truncation 
in  

✓ Polynomial scaling with   (predictions for 
100Sn)

✓Designed for parallel computing

✓Works most efficiently for doubly magic nuclei

T

A
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COHERENT ELASTIC  
SCATTERING ON 40Ar

ν

✓ No internal excitation of 
nucleus

✓ Nuclear recoil   is measured

✓ up to   MeV

T
Eν ≃50

FW(q2) = 1
QW

[NFn(q2) − (1 − 4 sin2 θW)ZFp(q2)]

dσ
dT

(Eν, T ) ≃ G2
F

4π
M[1 − MT

2E2ν
]Q2

WF2
W(q2) ∝ N2
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COHERENT ELASTIC  
SCATTERING ON 40Ar

ν

3

expressed in terms of nucleons and pions and are con-
sistent with the symmetries and broken chiral symme-
try of QCD. They are expanded in powers of (Q/⇤�)⌫ ,
where Q is the low-momentum scale characterizing nu-
clear physics, and ⇤� ⇠ 1 GeV is the QCD scale. The
coe�cients of the Hamiltonian expansion are low-energy
constants (LECs); they encapsulate the unresolved short-
range physics and are typically calibrated by adjusting
theoretical results to experimental data. The accuracy of
a calculation is controlled by the order ⌫ of the employed
dynamical ingredients and by the accuracy to which one
can solve the many-body problem. In this work we im-
plement Hamiltonians derived at next-to-next-to-leading
order or higher (⌫ = 3 or 4). To probe the systematic un-
certainties, we employ various chiral potentials. In par-
ticular, we use the NNLOsat interaction [37], for which
the LECs entering the two-body and three-body forces
are adjusted to nucleon-nucleon phase shifts and to en-
ergies and charge radii of light nuclei. We also use the
�NNLOGO(450) potential [38], a delta-full �-EFT inter-
action at next-to-next-to-leading order [39], which was
adjusted to light nuclei, and the saturation point and
symmetry energy of nuclear matter. Finally, we employ
selected soft potentials obtained by performing a simi-
larity renormalization group transformation [40] of the
two-body chiral potential by Entem and Machleidt [41],
with leading-order three-nucleon forces from �-EFT ad-
justed to the binding energy of 3H and the charge radius
of 4He [42, 43]. For these interactions we follow the no-
tation of Ref. [43], namely 1.8/2.0, 2.0/2.0, 2.2/2.0 (EM)
and 2.0/2.0 (PWA), where the first (second) number in-
dicates the cuto↵ of the two-body (three-body) force in
fm�1, and EM indicates that the pion-nucleon LECs en-
tering the three-nucleon force are taken from the En-
tem and Machleidt potential [41], while in PWA they are
taken from partial wave analysis data. For electroweak
operators we take the one-body terms, as two-body cur-
rents are expected to be negligible [44, 45], especially so
at the low momenta of CE⌫NS.

Results. – Figure 1 shows our results for the 40Ar
charge form factor Fch as a function of q, and com-
pares them to electron-scattering data from Ottermann
et al. [33]. This comparison validates the theory. Panel
(a) shows results from the NNLOsat interaction for dif-
ferent correlation levels of the coupled-cluster expansion.
We see that increasing the correlations from D to T-1
changes the form factor only slightly, and the results are
su�ciently well converged. This is consistent with re-
sults from previous studies [30, 48], where triples corre-
lations only a↵ected the radii below 1%. Panel (b) shows
calculations of the charge form factor at the T-1 level
for di↵erent interactions. As representative examples
we chose the 2.0/2.0 (EM), 2.0/2.0 (PWA), and 2.2/2.0
(EM) potentials. The form factors exhibit a dependence
on the choice of the Hamiltonian, particularly at larger
momentum transfers. The interaction �NNLOGO(450),
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FIG. 2. Panel (a): 40Ar weak form factor computed with dif-
ferent Hamiltonians. The EM-family interactions are shown
as a band. Panel (b): CE⌫NS as a function of the neutrino en-
ergy, computed with same three di↵erent Hamiltonians. The
inset shows the form factor zoomed into the low-q region rel-
evant to coherent scattering, in linear scale.

derived in a delta-full chiral framework, provides a qual-
itatively similar description of the experimental data as
the NNLOsat, noting that the former interaction repro-
duces the first minimum of |Fch| more precisely. We re-
mind the reader that – within the Helm model [49] –
the first zero of the form factor is proportional to the in-
verse radius of the charge distribution. Among the family
of EM potentials, the 2.2/2.0 (EM) interactions predicts
the first zero at higher q, consistent with a smaller charge
radius. Overall, one should trust the Hamiltonians only
for momentum transfers up to about q = 2.0 fm�1, which
marks the scale of the employed ultraviolet cuto↵s.

Figure 2(a) shows the 40Ar weak form factor FW of
Eq. (2) as a function of the momentum transfer q, cal-
culated in the T-1 scheme. Here, we show the soft inter-
actions with a band that encompasses the three di↵erent
potentials, labeled with (EM)-(PWA). The weak form
factor exhibits a mild dependence on the choice of the
Hamiltonian. The band spanned by the from factors of
the EM interactions exhibits a first dip at a larger q value
than the potentials NNLOsat and the �NNLOGO(450),

C. Payne at al.
Phys.Rev.C 100 (2019) 6, 061304

small nuclear structure 
uncertainties
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expressed in terms of nucleons and pions and are con-
sistent with the symmetries and broken chiral symme-
try of QCD. They are expanded in powers of (Q/⇤�)⌫ ,
where Q is the low-momentum scale characterizing nu-
clear physics, and ⇤� ⇠ 1 GeV is the QCD scale. The
coe�cients of the Hamiltonian expansion are low-energy
constants (LECs); they encapsulate the unresolved short-
range physics and are typically calibrated by adjusting
theoretical results to experimental data. The accuracy of
a calculation is controlled by the order ⌫ of the employed
dynamical ingredients and by the accuracy to which one
can solve the many-body problem. In this work we im-
plement Hamiltonians derived at next-to-next-to-leading
order or higher (⌫ = 3 or 4). To probe the systematic un-
certainties, we employ various chiral potentials. In par-
ticular, we use the NNLOsat interaction [37], for which
the LECs entering the two-body and three-body forces
are adjusted to nucleon-nucleon phase shifts and to en-
ergies and charge radii of light nuclei. We also use the
�NNLOGO(450) potential [38], a delta-full �-EFT inter-
action at next-to-next-to-leading order [39], which was
adjusted to light nuclei, and the saturation point and
symmetry energy of nuclear matter. Finally, we employ
selected soft potentials obtained by performing a simi-
larity renormalization group transformation [40] of the
two-body chiral potential by Entem and Machleidt [41],
with leading-order three-nucleon forces from �-EFT ad-
justed to the binding energy of 3H and the charge radius
of 4He [42, 43]. For these interactions we follow the no-
tation of Ref. [43], namely 1.8/2.0, 2.0/2.0, 2.2/2.0 (EM)
and 2.0/2.0 (PWA), where the first (second) number in-
dicates the cuto↵ of the two-body (three-body) force in
fm�1, and EM indicates that the pion-nucleon LECs en-
tering the three-nucleon force are taken from the En-
tem and Machleidt potential [41], while in PWA they are
taken from partial wave analysis data. For electroweak
operators we take the one-body terms, as two-body cur-
rents are expected to be negligible [44, 45], especially so
at the low momenta of CE⌫NS.

Results. – Figure 1 shows our results for the 40Ar
charge form factor Fch as a function of q, and com-
pares them to electron-scattering data from Ottermann
et al. [33]. This comparison validates the theory. Panel
(a) shows results from the NNLOsat interaction for dif-
ferent correlation levels of the coupled-cluster expansion.
We see that increasing the correlations from D to T-1
changes the form factor only slightly, and the results are
su�ciently well converged. This is consistent with re-
sults from previous studies [30, 48], where triples corre-
lations only a↵ected the radii below 1%. Panel (b) shows
calculations of the charge form factor at the T-1 level
for di↵erent interactions. As representative examples
we chose the 2.0/2.0 (EM), 2.0/2.0 (PWA), and 2.2/2.0
(EM) potentials. The form factors exhibit a dependence
on the choice of the Hamiltonian, particularly at larger
momentum transfers. The interaction �NNLOGO(450),
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FIG. 2. Panel (a): 40Ar weak form factor computed with dif-
ferent Hamiltonians. The EM-family interactions are shown
as a band. Panel (b): CE⌫NS as a function of the neutrino en-
ergy, computed with same three di↵erent Hamiltonians. The
inset shows the form factor zoomed into the low-q region rel-
evant to coherent scattering, in linear scale.

derived in a delta-full chiral framework, provides a qual-
itatively similar description of the experimental data as
the NNLOsat, noting that the former interaction repro-
duces the first minimum of |Fch| more precisely. We re-
mind the reader that – within the Helm model [49] –
the first zero of the form factor is proportional to the in-
verse radius of the charge distribution. Among the family
of EM potentials, the 2.2/2.0 (EM) interactions predicts
the first zero at higher q, consistent with a smaller charge
radius. Overall, one should trust the Hamiltonians only
for momentum transfers up to about q = 2.0 fm�1, which
marks the scale of the employed ultraviolet cuto↵s.

Figure 2(a) shows the 40Ar weak form factor FW of
Eq. (2) as a function of the momentum transfer q, cal-
culated in the T-1 scheme. Here, we show the soft inter-
actions with a band that encompasses the three di↵erent
potentials, labeled with (EM)-(PWA). The weak form
factor exhibits a mild dependence on the choice of the
Hamiltonian. The band spanned by the from factors of
the EM interactions exhibits a first dip at a larger q value
than the potentials NNLOsat and the �NNLOGO(450),
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operators we take the one-body terms, as two-body cur-
rents are expected to be negligible [44, 45], especially so
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Results. – Figure 1 shows our results for the 40Ar
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pares them to electron-scattering data from Ottermann
et al. [33]. This comparison validates the theory. Panel
(a) shows results from the NNLOsat interaction for dif-
ferent correlation levels of the coupled-cluster expansion.
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changes the form factor only slightly, and the results are
su�ciently well converged. This is consistent with re-
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calculations of the charge form factor at the T-1 level
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FIG. 2. Panel (a): 40Ar weak form factor computed with dif-
ferent Hamiltonians. The EM-family interactions are shown
as a band. Panel (b): CE⌫NS as a function of the neutrino en-
ergy, computed with same three di↵erent Hamiltonians. The
inset shows the form factor zoomed into the low-q region rel-
evant to coherent scattering, in linear scale.
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radius. Overall, one should trust the Hamiltonians only
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small nuclear structure 
uncertainties
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Results. – Figure 1 shows our results for the 40Ar
charge form factor Fch as a function of q, and com-
pares them to electron-scattering data from Ottermann
et al. [33]. This comparison validates the theory. Panel
(a) shows results from the NNLOsat interaction for dif-
ferent correlation levels of the coupled-cluster expansion.
We see that increasing the correlations from D to T-1
changes the form factor only slightly, and the results are
su�ciently well converged. This is consistent with re-
sults from previous studies [30, 48], where triples corre-
lations only a↵ected the radii below 1%. Panel (b) shows
calculations of the charge form factor at the T-1 level
for di↵erent interactions. As representative examples
we chose the 2.0/2.0 (EM), 2.0/2.0 (PWA), and 2.2/2.0
(EM) potentials. The form factors exhibit a dependence
on the choice of the Hamiltonian, particularly at larger
momentum transfers. The interaction �NNLOGO(450),
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FIG. 2. Panel (a): 40Ar weak form factor computed with dif-
ferent Hamiltonians. The EM-family interactions are shown
as a band. Panel (b): CE⌫NS as a function of the neutrino en-
ergy, computed with same three di↵erent Hamiltonians. The
inset shows the form factor zoomed into the low-q region rel-
evant to coherent scattering, in linear scale.

derived in a delta-full chiral framework, provides a qual-
itatively similar description of the experimental data as
the NNLOsat, noting that the former interaction repro-
duces the first minimum of |Fch| more precisely. We re-
mind the reader that – within the Helm model [49] –
the first zero of the form factor is proportional to the in-
verse radius of the charge distribution. Among the family
of EM potentials, the 2.2/2.0 (EM) interactions predicts
the first zero at higher q, consistent with a smaller charge
radius. Overall, one should trust the Hamiltonians only
for momentum transfers up to about q = 2.0 fm�1, which
marks the scale of the employed ultraviolet cuto↵s.

Figure 2(a) shows the 40Ar weak form factor FW of
Eq. (2) as a function of the momentum transfer q, cal-
culated in the T-1 scheme. Here, we show the soft inter-
actions with a band that encompasses the three di↵erent
potentials, labeled with (EM)-(PWA). The weak form
factor exhibits a mild dependence on the choice of the
Hamiltonian. The band spanned by the from factors of
the EM interactions exhibits a first dip at a larger q value
than the potentials NNLOsat and the �NNLOGO(450),
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These results based on the properties 
of ground-state. For nuclear responses 

we need excited states.



LORENTZ INTEGRAL TRANSFORM

 
 Sμν(ω, q) = ∫ dσK(ω, σ)Rμν(σ, q) = ⟨Ψ |J†

μ K(ω, ℋ − E0) Jν |Ψ⟩

  has to be inverted to get access to  Sμν Rμν

Instead we calculate
continuum spectrum

Lorentzian kernel: 
  KΛ(ω, σ) = 1

π
Λ

Λ2 + (ω − σ)2

∫
 

 Rμν(ω, q) = ∑
f

⟨Ψ |J†
μ |Ψf⟩⟨Ψf |Jν |Ψ⟩δ(E0 + ω − Ef )
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➡ LIT-CC used for photo-absorption
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Uncertainty band: inversion procedure

J.E.S. et al.
arXiv: 2103.06786
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• Results for 2 different chiral potentials
• Comparison with Plane wave impulse approximation (PWIA)

40Ca

J.E.S. et al.
arXiv: 2103.06786



OUTLOOK & CONCLUSIONS

• Nuclear physics is challenged by neutrino oscillation experiments

• We set stage for neutrino-nucleus cross-section calculation

• With LIT-CC we obtained first ab initio results for longitudinal 
response for medium-size nuclei (16O and 40Ar can be 
addressed)

• Next step: transverse response  

• Compute spectral function consistently with CC

dσ
dωdq e

= σM(υLRL + υTRT)
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LIT-CC METHOD
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FIG. 3. (Color online) Convergence of L(!0,�) at � =
10 MeV as a function of Nmax for h̄⌦ = 26 MeV (a). Compar-
ison of the LIT at � = 10 MeV within CCSD for Nmax = 18
and the Lorentz integral transform of Ahrens et al. data [43]
(b).

inversion, we make the following ansatz

S(!) = !
3/2 exp

 
�↵Z1Z2

r
2µ

!

!
NX

i

cie
� !

�i . (10)

Here, the exponential prefactor is a Gamow factor, and
µ ⇠ A�1

A mn is the reduced mass with mn being the nu-
cleon mass. The charges Z1 = 7 and Z2 = 1 correspond
to the first disintegration channel (proton separation) in
the � + 16O reaction. The binding energy and !th in the
CCSD approximation (experiment) are 107.24 (127.72)
and 14.25 (12.13) MeV, respectively. The threshold en-
ergy !th is computed within coupled cluster theory using
the particle-removed equation-of-motion [29]. Note that
the inversion is sensitive to numerical noise, and that the
CCSD results using the HO basis are (only) converged
at a few-percent level, and not at an ideal sub-percent
level. In order to improve the convergence and make
the inversion more stable we employ a basis of bound
and discretized continuum states obtained from diago-
nalizing a spherical Woods-Saxon potential in a discrete
plane-wave basis of 35 mesh points for the proton and
neutron d5/2, s1/2, d3/2 partial waves [45]. For the re-
maining partial waves we employed Nmax = 16 HO shells

Ahrens  et al.
Ishkanov et al.
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FIG. 4. (Color online) Comparison of the 16O dipole response
calculated in the CCSD scheme against experimental data by
Ahrens et al. [43] (triangles with error bars), and Ishkhanov
et al. [44] (red circles).

with h̄⌦ = 26 MeV. The inversion determines the coe�-
cients ci and the non-linear parameter � of the N basis
functions by a least-square fit. Figure 4 shows the CCSD
dipole response function and compares it to the data of
Ahrens et al. [43], and also to the more recent evaluation
by Ishkhanov et al. [44, 46]. The theoretical band is ob-
tained by inverting the LIT with width � = 10 MeV and
by varying the number N of basis functions employed
in the inversion from 5 to 9. By inverting the LIT at
� = 20 MeV we get very similar results. The band is
a lower estimate of the theoretical error, as it does not
account e.g. for missing triples in the cluster expansion.
The position of the GDR in 16O is nicely explained by
our calculation whose only ingredient is a NN interac-
tion which fits NN scattering data. That is the case de-
spite the fact that the binding and threshold energies are
not correctly reproduced. This fact might be coinciden-
tal, given that we are omitting three-nucleon (3N) forces,
which may have an impact on the response function. We
observe that the form of the theoretical result is some-
what smeared compared to data. If larger model spaces
were available to allow a more accurate calculation of the
LIT at � = 10 and even at smaller �, then finer structures
in the response could be possibly resolved, if present. The
more structured form of the data below 20 MeV can be
due to the contribution of higher multipoles (quadrupole
and octupole) in the photo-absorption cross section. We
note that the tail region between 40 and 100 MeV is
reproduced within uncertainties. When integrating the
theoretical photo-absorption cross section up to 100 MeV
we obtain an enhancement  = 0.57�0.58 of the Thomas-
Reiche-Kuhn sum rule

⇥
59.74NZ

A MeV mb(1 + )
⇤
.

Summary.— We develop a new method based on
merging the Lorentz integral transform approach with

giant dipole resonance in 16O

8

TABLE I. Theoretical values of ↵D for di↵erent nuclei cal-
culated with the NNLOsat interaction in comparison to ex-
perimental data from [58–60] and other calculations from
Refs. [63] (a), [61] (b) and [62] (c) for 4He, to experimental
data from Ref. [64] for 16O. For 22O we compare to the value
obtained integrating the data from Ref. [18] first over the
whole energy range (d) and then only the first 3 MeV of the
strength (e), corresponding to the low-lying dipole strength.
Values are expressed in fm3. The theoretical uncertainties of
our calculations stem from the �h⌦ dependence in the model
space with Nmax = 14.

Nucleus Theory Exp
4He 0.0735(1) 0.074(9)

0.0673(5)a

0.0655b

0.0651c

0.0694c
16O 0.57(1) 0.585(9)
22O 0.86(4) 0.43(4)d

0.05(1) 0.07(2)e

On the other hand, Leistenschneider et al. observed a
PDR extending for about 3 MeV above the neutron
emission threshold of Sn = 6.85 MeV. Integrating the
data over this interval yields a dipole polarizability
↵exp
D (3 MeV) = 0.07(2) fm3. While our calculations in

Figure 8 does not reproduce the experimental thresh-
old, integration over the first 3 MeV of the strength
and considering the di↵erent �h⌦ frequencies yields
↵th
D (PDR) = 0.05(1) fm3. This is consistent with the

experimental result.

In Figure 9 we show the response function of 4He. The
response function is obtained from the inversion of the
LIT as described in Refs. [34, 48, 49] and the width
of the band is an estimate of the inversion uncertainty.
The dark band from Ref. [35] is the result obtained with
coupled cluster with singles-and-doubles (CCSD) using a
NN interaction at next-to-next-to-next-to-leading order
(N3LO) [52]. The light band represents the calculation
of this work with NNLOsat [26] and it has been obtained
by inverting the LIT with � = 10 and 20 MeV calculated
at Nmax = 14 and �h⌦ = 22 MeV. This is also the curve
that has been integrated with method (i) in Figure 3.
We find that the NNLOsat response function, which in-
cludes three-nucleon forces, presents a larger peak with
respect to other results with three-nucleon forces from
Refs. [66, 67]. Finally, the theoretical results are com-
pared with the experimental data by Nakayama et al. [68]
(blue circles), Arkatov et al. [58, 59] (white squares),
Nilsson et al. [69] (yellow squares), Shima et al. [70, 71]
(magenta circles) and Tornow et al. [72] (green squares).

In Figure 10 we show the response function for 16O
calculated with a NN interaction using CCSD [35] (light
band) and then with NNLOsat (dark band). The
calculations are compared with the experimental data
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R
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NN(N3LO) (CCSD)
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FIG. 9. (Color online) 4He photo-absorption response func-
tion calculated with di↵erent methods and interactions (see
text for details) compared with experimental data from
by Nakayama et al. [68] (blue circles), Arkatov et al. [58, 59]
(white squares), Nilsson et al. [69] (yellow squares), Shima
et al. [70, 71] (magenta circles) and Tornow et al. [72] (green
squares). Theoretical curves are shifted on the experimental
threshold.

from Ahrens et al. [64] (triangles with error bars)
and Ishkhanov et al. [73] (red circles). The response func-
tion with NNLOsat has been obtained again by inverting
the LIT with both � = 10 and 20 MeV and at frequency�h⌦ = 22 MeV. The large error band for the NNLOsat re-
sults from the fact that the largest available model space
size in our calculation, namely Nmax = 14, is smaller than
theNmax = 18 used for the N3LO potential. Nevertheless,
it is interesting to see that three-nucleon forces enhance
the strength, slightly improving the comparison with the
experimental data.
Comparing Figure 3 and 6 with Figure 9 and 10 respec-

tively, and taking into account the results summarized in
Table I, it is clear that the polarizability is not very sensi-
tive to the structure and shape of the response function,
but rather to the distribution of the dipole strength at
low energies.

E. Correlations between ↵D and rch

Let us also attempt to probe systematic theoretical un-
certainties that are due to the employed interaction by
considering results from di↵erent families of Hamiltoni-
ans. Such an approach can help to correlate observables
of interest, see Refs. [4–7, 74–76] for examples. To study
such correlations, one needs a considerable number of dif-
ferent interactions, so that one can obtain results span-
ning a wide range of values for the observables under
investigation. For this reason, we choose to use similar-
ity renormalization group (SRG) [55] and Vlow−k [56]

4He photo-absorption

M. Miorelli et al.
Phys.Rev.C 94 (2016) 3, 034317

S. Bacca et al.
Phys.Rev.C 90 (2014) 6, 064619
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charge operator  ̂ρ(q) =
Z

∑
j= 1

eiqz′�j

tering the response functions are apparently dependent upon
two independent variables q and v . However, a number of
authors have explored the possibility that there is an under-
lying relationship between these variables in quasielastic
scattering, and a number of scaling variables have been pro-
posed. For example, a subset of the present data was used as
a test of the y-scaling function @81#.
A scaling variable c was defined by Alberico et al. @75#

in such a manner that if the relativistic Fermi gas were an
exact description of nuclear structure, then all quasielastic
response functions would scale exactly according to this
variable. In this section the formalism will be that of Ref.
@75#, and therefore the definitions of the mathematical sym-
bols will not be repeated here.
It is shown in Ref. @75# that in the framework of the

relativistic Fermi gas model one can define a scaling variable
c that maps the separated response functions into parabolas
as

c5@2u~l2l0!21#A 1
jF

~g221 !.

This then leads to a scaling function S(c) of the form

S~c!5
3
4 ~12c2!u~12c2!, ~14!

where u(x2a) is the unit step function at a . The scaling
function defined in this manner is normalized such that

E
21

11
S~c!dc51.

The scaling function is related to the longitudinal and trans-
verse response functions by

RL5(
i

NijF

MNikhF
3 @GEi

2 ~t!1W2i~t!D#S~c!, ~15!

RT5(
i

NijF

MNikhF
3 FtGMi

2 ~t!1
1
2W2i~t!D GS~c!, ~16!

where GEi(t) and GMi(t) are the Sachs electric and mag-
netic form factors, respectively, for the ith nuclear species.
An extension of the relativistic Fermi gas model was

made by Cenni et al. @82# to include effects of nuclear bind-

FIG. 16. Longitudinal response functions extracted from the present data for 40Ca over the three-momentum transfer range 300–500
MeV/c . The error bars indicate the propagated systematic errors. The solid curves were calculated from the relativistic Fermi gas model @75#,
and the dashed curves were calculated from the relativistic Hartree shell model @76#

3168 56C. F. WILLIAMSON et al.

  

                                       

RL(ω, q) = ∑
f

⟨Ψ | ̂ρ†(q) |Ψf⟩

⟨Ψf | ̂ρ(q) |Ψ⟩δ(E0 + ω − Ef )

40Ca ➡ operator multipole 
decomposition (and sum)

➡ higher energy-momentum 
transfer than considered 
earlier

➡ translationally non-invariant 
operator
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charge operator  ̂ρ(q) =
Z

∑
j= 1

eiqz′�j

m0(q) = ∫ dωRL(ω, q) = ∑
f ≠ 0

|⟨Ψf | ̂ρ |Ψ⟩ |2

tering the response functions are apparently dependent upon
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lying relationship between these variables in quasielastic
scattering, and a number of scaling variables have been pro-
posed. For example, a subset of the present data was used as
a test of the y-scaling function @81#.
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made by Cenni et al. @82# to include effects of nuclear bind-

FIG. 16. Longitudinal response functions extracted from the present data for 40Ca over the three-momentum transfer range 300–500
MeV/c . The error bars indicate the propagated systematic errors. The solid curves were calculated from the relativistic Fermi gas model @75#,
and the dashed curves were calculated from the relativistic Hartree shell model @76#

3168 56C. F. WILLIAMSON et al.

FIG. 17. Same as for Fig. 16 but showing the transverse response functions.

FIG. 18. Ratio of experimental integrated longitudinal response
functions to the total longitudinal strength calculated from the rela-
tivistic Fermi gas model for 40Ca. The solid squares are the present
data and the solid triangles are the results of Meziani et al. @49#.
The present results are given in tabular form in Table II.

FIG. 19. The Coulomb sum rule for 40Ca. The solid circles are
calculated from the data of the present experiment. The solid line is
the sum rule calculated from relativistic Fermi gas calculations. The
dashed curve is the theoretical sum rule for the independent particle
model with relativistic corrections.
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RL(ω, q) = ∑
f

⟨Ψ | ̂ρ†(q) |Ψf⟩

⟨Ψf | ̂ρ(q) |Ψ⟩δ(E0 + ω − Ef )

40Ca
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  has 3A coordinates   3(A-1) coordinates +  |Ψ⟩ → ⃗R = 1
A

A

∑
i

⃗ri

With translationally non-invariant operators we may excite 
spurious states

center of mass problem

m0(q) = ∫ dωRL(ω, q) = ∑
f ≠ 0

|⟨Ψf | ̂ρ |Ψ⟩ |2 = ⟨Ψ | ̂ρ† ̂ρ |Ψ⟩ − |Fel(q) |2

easier to calculate since 
we do not need  |Ψf⟩

intrinsic
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CoM spurious states dominate for light nuclei

 24

∼ 30 %

J.E.S. B. Acharya, S.Bacca, G. Hagen
Phys.Rev.C 102 (2020) 064312



COULOMB SUM RULE

Project out spurious states:       ̂ρ |Ψ⟩ = |Ψph ys⟩ + |Ψspu r⟩

 |Ψ⟩ = |ΨI⟩ |ΨCoM⟩ center of mass wave 
function is a Gaussian

It has been shown that to good approximation the ground state factorizes:

 ̂ρ |Ψ⟩ = |Ψexc
I ⟩ |ΨCoM⟩ + |ΨI⟩ |Ψexc

CoM⟩

We follow a similar ansatz for the excited states:

 25
spurious

G. Hagen, T. Papenbrock, D. Dean
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Multipole sum

  ̂ρ =
∞

∑
J= 0

[ ̂ρ]J

 28

5

FIG. 2. Comparison of method A and B: for 4He (panel (a))
and 16O (panel (b)) using the N3LO-EM interaction. For
method B we show the case with and without (w/o) spurious
CoM states.

all states with excitation energy below 15 MeV, as they
have to be spurious given that 4He has no excited state
below the proton emission threshold. The omitted states
were a 1� state approximately at energy 5 ⇥ 10�2 MeV
above the ground state and a 2+ state at energy 10 MeV
above the ground state. For 16O, we remove a 1� state
at 0.15 MeV, which also must be spurious as this nucleus
does not have any excited states at such low energy.

In Fig. 2 we show a comparison between method A
and method B for 4He and 16O using the N3LO-EM in-
teraction. For method B we show the curve obtained in
case we do not remove the spurious states in the Lanc-
zos procedure as well as the one where we remove such
states. Calculations are performed for a model space of
15 oscillator shells and a harmonic oscillator frequency
of }! = 20 MeV for all the three curves. In case of 16O
we show a band obtained by the di↵erence between the
model spaces with 15 and 13 major shells. This gives us
an idea of the uncertainty in a model space size that will
be achievable in other calculations where we will add 3N
interactions.

First of all, we see that the removal of the spuriosi-

ties has a much larger e↵ect in 4He than in 16O as ex-
pected, since the heavier the nucleus, the smaller the
CoM contamination must be. Second, we see that the re-
sults of method B w/o spurious states agree quite nicely
with those of method A for both nuclei. The removal of

FIG. 3. Cumulative sums of the multipole expansion for the
Coulomb sum rule of 4He (panel (a)) and 16O (panel (b))
using the N3LO-EM interaction in method B w/o spurious
states.

spuriosities brings the agreement at q = 100 MeV from
50%(38%) to 0.5%(3.5%) for 4He(16O), while at q = 200
MeV, it brings the agreement from 35%(20%) to 3%(8%).
We consider this comparison satisfactory and from now
on we will use method B only w/o the spurious states to
perform further analysis.
Convergence of multipole expansion— A natural ques-

tion in method B is how many multipoles are needed in
the expansion of Eq. (3). We show this for the N3LO-
EM NN interaction in Fig. 3. These calculations are
performed for the same model space as above. Clearly,
the convergence in terms of multipoles strongly depends
on the momentum transfer, as expected. Furthermore,
we see that the convergence is faster for the smaller 4He
nucleus than for the larger 16O nucleus. For q below 200
MeV only four multipoles are needed, while for q = 500
MeV nine and eleven multipoles are needed to reach sat-


