

New Results from COHERENT

M. R. Heath ORNL Mar. 18, 2021

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Coherent Elastic Neutrino-Nucleus Scattering

CEvNS

- Neutrino interacts with nucleus which recoils coherently
 - $E_
 u \lesssim rac{hc}{R_N} pprox 50 \, {
 m MeV}$
- LARGE cross section
 - $\sigma \approx 0.4 \times 10^{-44} N^2 E_{\nu}^2 \text{cm}^2$
 - *N*² dependence is tell-tale signature
- SMALL recoil energy
 - $E_r^{max} \lesssim rac{2E_
 u^2}{M_N} \simeq 50 \, \mathrm{keV}$

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering.

Coherent Elastic Neutrino-Nucleus Scattering

Why CEvNS

 Well-understood cross section allows for beyond-SM checks

•
$$\sigma_{Tot} = \frac{G_F^2 E_{\nu}^2}{4\pi} \left[Z \left(1 - 4 \sin^2 \theta_W \right) - N \right]^2 F^2 \left(Q^2 \right)$$

- Neutrino electromagnetic properties
- Non-Standard Interactions
- Important bkg for next-gen DM experiments
- Dominant neutrino interaction in supernovae
 - And detection channel!
- Applications to reactor monitoring

COHERENT at the Spallation Neutron Source

The Spallation Neutron Source

- 1 GeV protons hit liquid-Hg target
- Recently reached 1.4 MW
- Pulsed at 60 Hz
 - Pulse duration: 350 ns FWHM
 - Measure steady-state bkg out of beam!
- Neutrinos come along for free!

Credit: ORNL/Jill Hemman

COHERENT at the Spallation Neutron Source

DAR $\tau \sim 26 \text{ ns}$

> DAR ~2.2 us

COHERENT at the SNS

- Pion-decay-at-rest neutrino source
 - $0.09 \pi / POT$
- **EXTREMELY** neutron quiet corridor: Neutrino Alley
- Multi-target program to measure N^2 dependence

CAK RIDGE

5

COHERENT at the SNS: CEvNS On Ar

Counts

COH-Ar-10

- Aka CENNS-10
- 24 kg fiducial mass
- Single-phase scintillation-only
- 4.5 PE/keVee
 - 20 keVnr threshold

Source Energy (keVee)

• 6.12 GWhr

6 CAK RIDGE

<u>م</u> 500

400

200 Juned Phot 200 200

100

Mea

COHERENT at the SNS: First Observation of Ar!

Global Fit to Quenching Factor Data

2 Independent Blind

Analyses

CEvNS Cross Section

Energy

Time

PSD

- Combine best-fit CEvNS counts with flux, fid. volume, efficiency uncertainties: $\frac{N_{meas}}{N_{SM}} = 1.2 \pm 0.4$
- Flux-averaged cross section: $\sigma_{meas} = (2.3 \pm 0.7) \times 10^{-39} \text{ cm}^2$

COHERENT at the SNS: First Light Results

CEVNS as Probe of New Physics

Neutrino 2020 Virtual Meeting

Courtesv of J. Newby ORNL

PHYSICAL REVIEW D 97, 033003 (2018)

(B) (Received 4 December 2017) exhibited 15 February 2011)

K.A. Kounikol Dupetnost of Nuclear Papers and Quantum Theory of Collisions, Funding of Restrict Lowership, Restriction, Restried, Restriction, Restr

Reinterpreting the week mixing angle from atomic parity viabilion in view of the Ca

CAK RIDGE National Laboratory

COHERENT at the SNS: Csl

First Csl Result 2017!

- Everything came together in 2017
 - Intense neutrino source
 - Sensitive detector
 - Low backgrounds
- First CEvNS detection with 14.6 kg Csl detector
- 6.7σ significance

q

Vational Laboratory

 Now new results with increased statistics, better understanding of systematics!

Layer	HDPE	Low backg. lead	Lead	Muon veto	Water
Thickness	3″	2″	4"	2″	4"
Colour		111			

Science 357 (2017) 6356, 1123-1126

COHERENT at the SNS: Csl

Scintillation Response to Nuclear Recoils

- Nuclear recoil light output 'quenched' relative to similar energy electronic recoil
- Update quenching factor fit:
- Include 5 datasets using Csl[Na] crystal from same manufacturer as COHERENT crystal
- 4th-degree polynomial global fit

COHERENT at the SNS: Csl

Waveform Reconstruction

- Each waveform has a coincidence window (C) in time with the beam and an anticoincidence window (AC) preceding the beam
- AC events give unbiased *in situ* estimate of steady-state backgrounds in neutrino alley

Event Selection

≵0

		Data Cut		Purpos	e		
Quality		Muon veto, PMT satura- Reject		Reject	Reject cosmic-induced events, re-		Reduce detector livetime.
		tion, digitizer overflow		quire e	quire energy consistent with low-		No cut on ROI and effect
				energy	recoil		measured <i>in situ</i>
Scintillatio	n Activity	< 6 PE pulses in pretrace		Reject events occurring when de-		ing when de-	
				tector i	s bright		
Ultra-prom	ipt	No PE in final 0.2 µs of pre-		Reject events from tail-end of		tail-end of	
	trace pr		pretrac	pretrace sneaking into ROI			
Afterglow		$\Delta t_{\it fs} < 0.52\mu m s$		Reject	events with m	is-ID'd onset	Efficiency calculated with
							simulation. 5x reduction of
							mis-ID'd onset events, neg-
							ligible effect on signal
Δt betwee	en first and	\geq 9 pulses in ROI		Reject	accidental	coincidence	Efficiency determined from
second PE	peaks			from af	terglow		¹³³ Ba calibration.
	60	Background AC data	++++	Bac	kground AC data	ROI	
DAK RIDGE	Background Events	- Ultra-prompt events Preliminary	Background Events		Prompt Scatters Preliminary ++++++++++++++++++++++++++++++++++++	Afterglow pulse M	$\Delta t_{f_S} \longrightarrow CEVNS Signal$ is-ID'd Onset
ational Laboratory							

CEvNS Selection Efficiency

- Efficiency depends on energy AND time
- Dependence is **uncorrelated**

Expected Rates

- 2D likelihood fit in PE and trec
- Beam-unrelated steady-state background measured *in situ* with out-of-time data
- Beam-related neutron background small

Best-Fit Results

- Data match best-fit spectra very well
- Best-fit CEvNS slightly low, consistent within error
- Uncertainty now dominated by flux normalization
- Overall prediction improved from 2017: 33 $\% \rightarrow 16 \,\%$

500

40

200

100

Counts / µs

CAK RIDGE

Best-Fit Results

• No-CEvNS hypothesis rejected at 11.6σ

 $\Delta \chi^2$

0

Consistent witl .

Jornesis rejected at 11.00		$\int \frac{1}{\chi} \int \frac{1}{\chi} $	02.4/90
h Standard Model prediction to	$\circ 1\sigma$	CEvNS cross section SM cross section	$169^{+30}_{-26} imes 10^{-40}{ m cm}^2$ (189 \pm 6) $ imes$ 10 $^{-40}{ m cm}^2$
- COHERENT Data Stat-only Stat-only SM CEVNS SM CEVNS 	Preliminary 10 ⁰ Preliminary 10 ⁰ 10 ⁰ Na 10 ⁰ 10 ⁰ 0 ¹⁰ Na	1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1	90 0 umber

No-CEvNS Rejection

Ett av2 / dof

Neutron number

SM CEvNS Prediction Fit CEvNS Events 11.6σ

 306 ± 20

82.4/98

 $333 \pm 11(\text{th}) \pm 43(\text{ex})$

Ex. New Physics Study: Flavor-Dependent X-Sec.

S CAK RIDGE National Laboratory

*Additional Physics Studies in D. Pershey Mag7s and FNAL JETP Seminar talks

critical up-values

Ongoing COHERENT Activities

Argon

- COH-Ar-10 continues running
- Accumulated 2x statistics

NUBES

 Measure neutrino-induced neutrons on Pb and Fe

MARS

Mobile neutron-flux monitor

$Nal \nu E$

- Background measurements for tonne-scale Nal
- Charged-current cross sections on ¹²⁷

Supporting Work

- Absolute timing measurement of SNS beam
- Map neutron timing/flux throughout hallway

Commissioning 2 new detectors in 2021

- 16 kg of low-threshold Ge PPC detectors "COH-Ge-1"
- Expect > 500 CEvNS evts/yr at $E_{rec} > 0.3$ keVee
- Good energy resolution
- 7/8 detectors in hand. Finalizing shielding design

- Multi-ton array of Nal crystals "COH-Nal-2"
- 13 keVnr threshold for CEvNS on Na from NaI ν E background measurements
- Lightest COHERENT nucleus
- ²³Na sensitive to axial currents

Future Precision-Measurement Plans at the SNS

Flux Normalization

- Charged-current cross section with deuterium known to $\approx 3\,\%$
- Heavy-water Cherenkov detector planned to measure neutrino flux directly
- D₂O on hand!

Tonne-Scale Ar

- Ton-scale LAr detector COH-Ar-750
- Single phase, scintillation only
- Expect 3000 CEvNS evts/yr
- Sensitive to accelerator-produced dark matter and charged-current Ar events!

Future Precision-Measurement Plans at the SNS: SNS Upgrades

- Proton Power Upgrade (2024)
 - Increase power of proton beam
 - $1.4
 ightarrow 2.0 \, \text{MW}$
- Second Target Station (\approx 2028)
 - Total SNS power: 2.8 MW
 - Interest from the lab to include neutrino detector hall for $\approx 10\,t$ detector in STS hall design

Future Flavor-Dependent Cross Section Sensitivity

- Future COH-Ge-1 and COH-Ar-750 will be capable of precision CEvNS measurements, increasing sensitivity to flavored CEvNS cross sections
- Limited by current $10\,\%$ uncertainty on neutrino flux
 - Will greatly benefit from D₂O flux normalization measurement!

CAK RIDGE

Conclusions / Summary

- CEvNS measurements at the SNS offer opportunities for sensitive BSM, nuclear, and neutrino studies
- COHERENT has successfully measured CEvNS on multiple targets at the SNS
- COHERENT is pursuing several nuclear targets and is entering a phase of precision measurements

Acknowledgements:

We are grateful for logistical support and advice from SNS (a DOE Office of Science facility). Much of the background measurement work was done using ORNL SEED funds, as well as Sandia Laboratories Directed Research and Development (LDRD) and NA-22 support. LAr detector deployment is supported by ORNL LDRD funds and the CENNS-10 detector is on loan from Fermilab. We thank Pacific Northwest National Laboratory colleagues and Triangle Universities Nuclear Laboratory for making resources for various detector components available. COHERENT collaborators are supported by the U.S. Department of Energy Office of Science, the National Science Foundation, NASA, and the Sloan Foundation.

Backups

Beyond First-Light Measurements

Near-Future/First light

OAK RIDGE

- Multiple targets with different N/Z constrain parameter space
- Sensitivity studies incorporating recoil/time spectra underway
- Flux normalization via D₂O CC detector greatly improves 10 % uncertainty on neutrino flux

Enter CENNS-750

- Single-phase liquid argon calorimeter
- 610 kg fiducial mass
- Designed to meet/exceed 20 keVnr threshold
- Extensive photodetector R&D/Simulation underway
- Designed for future use of underground Ar

CENNS-750 in Neutrino Alley

- It fits!
- Designed to occupy current CENNS-10 footprint

CAK RIDGE

Precision Physics

- 3000 CEvNS events/SNS year
- Expect 400 CC and NC inelastic events/SNS year
 - Cross sections important for understanding DUNE SN signature

Vector Portal DM

- Potential vector portal dark matter produced by pions in SNS target
- Signal:
 - Nuclear recoils following beam time profile
 - Spectrum dependent on mediator and DM mass
 - Sensitivity improved via better understanding/mitigation of beam-related neutrons

PHYSICAL PEVIEW D 95 035006 (2017)

D₂O Expected Signal/Bkg Rates

Expected Precision

CAK RIDGE

- Expected 4.7 % precision in 2 SNS-years
- Single 592 kg detector module

	Total Events	Events Above Threshold
$ u_e + D$	1040	912
$ u_e + 0 $ Cosmics	390 20200	159 293

