THEIA: An advanced optical neutrino detector

Zara Bagdasarian for the THEIA collaboration **University of California, Berkeley**

NuSTEC workshop March 18th 2021

Theia: advanced optical multipurpose neutrino detector

Cutting edge developments in the target material and photodetection

Broad physics program: Studying neutrino fundamental properties and astrophysical objects

Theia: advanced optical multipurpose neutrino detector

Cutting edge developments in the target material and photodetection

THEIA: An advanced optical neutrino detector Eur. Phys. J. C 80, 416

Broad physics program: Studying neutrino fundamental properties and astrophysical objects

How to broaden the current physics reach

Scintillation Detectors:
High light yield
Low energy threshold
Good energy and position

resolutions

S Limited in size by absorption and cost

No directionality

Water-based Liquid Scintillation (WbLS) Detectors: Get best of two worlds

Cherenkov Detectors:

- **V** Directional information
- Can be very large (low
- absorption)
- Particle ID at high energies
- No access to physics below
- the Cherenkov threshold
- S Low light yield

Water-based Liquid Scintillator - Basics

- Water-based Liquid Scintillator (WbLS) is a mixture of pure water and oil-based liquid scintillator
- WbLS is made using a surfactant (soap-like) such as PRS* (hydrophilic head and hydrophobic tail) to hold the scintillator molecules in water in a "micelle" structure
- Combines the advantages of water (transparency, low cost) and liquid scintillator (high light yield)

Water-based Liquid Scintillator - Advanced

Developed Water-based Liquid Scintillator (WbLS) cocktails require extensive characterization:

- Light Yield
- Emission spectrum
- Scintillation time profile
- Scattering and attenuation lengths

Other relevant developments:

- Nanofiltration
- Advanced reconstruction techniques, including machine learning
- Cherenkov/Scintillation separation demonstration

Large area picosecond photodetectors LAPPDs (~70 ps TTS) or other fast photodetectors

B.W.Adams et al. NIM A Volume 795, 1 (2015)

- Dichroic filters
- Red-sensitive PMTs
- Filtering

T. Kaptanoglu et al. Phys. Rev. D 101, 072002 (2020)

New Generation Photodetectors

Large area picosecond photodetector (LAPPD):

Micro-channel plate, fast-timing photodetectors

- Large-area: 20×20 cm
- Fast timing: ~70 ps time resolution
- High quantum efficiency (QE): >20-30 %
- Position resolution: mm scale

Very fast large-area & HQE PMT TTS~500ps Q.E. > 30%

Large-area red-sensitive PMTs TTS~500ps Q.E. > 30%

Dichroic filters (Wavelength discrimination)

Performance measurements and MC studies

WbLS characterization:
Scintillation light yield
Emission time profile with betas and X-rays
Emission spectra

Monte Carlo model construction

J. Caravaca et al. Eur. Phys. J. C 80, 867 (2020) D. Onken et al., Mater. Adv., 1, 71-76 (2020)

- J. Caravaca et al. Eur. Phys. J. C 77, 811 (2017)
- J. Caravaca et al. Phys. Rev. C 95, 055801 (2017)

CHESS experiment at UC Berkeley Example of impact on the CNO measurement precision:

Scaling up

ANNIE @FermiLab

Main Goal:

understanding neutrino-nucleus interactions, focusing on production and multiplicity of final-state neutrons

Interest to Theia:

- First deployment of LAPPDs (happening now)
- Deployment of 0.5 t WbLS
- C/S separation in a large-scale experiment
- High and low-energy events reconstruction
- Neutron detection

A.R. Back et al JINST 15 P03011 (2020) M.J.Minot et al NIM A 787, 78 (2015)

Advanced Instrumentation Testbed Neutrino Experiment One (AIT/NEO)

Neutrino Experiment One (NEO) the first demonstration of reactor monitoring in the far-field

Main Goal:

non-intrusively detect the ON/OFF power cycle of a single reactor

Interest to Theia:

- Deployment of kt scale WbLS
- Low energy antineutrinos detection in WbLS

CV

Start of data taking: ~2024

Location: Boulby Underground Lab (UK)

WbLS volume: 1kt

Interests:

Non-proliferation, Solar neutrinos, NLDBD

Theia: advanced optical multipurpose neutrino detector

Cutting edge developments in the target material and photodetection

THEIA: An advanced optical neutrino detector Eur. Phys. J. C 80, 416

Broad physics program: Studying neutrino fundamental properties and astrophysical objects

Theia: multipurpose neutrino detector

solar neutrinos (CNO, 8B)

geoneutrinos

diffuse supernova neutrinos (DSNB)

supernova burst neutrinos

neutrino mass ordering

neutrino CPviolating phase δ

neutrinoless double beta decay

nucleon decay

Theia-25 at long baseline neutrino facility (LBNF) Can be located at fourth Deep **Underground Neutrino Experiment** (DUNE) cavern (Depth: 4300 m.w.e.) Sanford Underground **Research Facility (SURF) Fermilab** 800 miles Theia Phase I NEUTRINO PRODUCTION PARTICLE DETECTOR PROTON UNDERGROUND ACCELERATOR **PARTICLE DETECTOR EXISTING** PC: DUNE collaboration

 Using Fermilab's LBNF neutrino beam for **long-baseline neutrino oscillation** measurements

 Precision measurement of neutrino CP-violating phase δ

Theia: oscillation parameters

Theia can complement DUNE measurements (same location, different target, systematics) - important cross-check

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - 2sin(2\theta_{23})sin^{2}$$

- Comparison of the unoscillated flux (measured close to the beam source) and oscillated flux at far distance.
- Combination of 3D scintillator tracker with Theia more similar to T2K
- Long baseline (1300km): more matter -> more sensitivity to mass hierarchy
- > 5 σ for 30% of δ_{CP} values (524) kt-MW-year)

Theia: supernova neutrinos

Supernova (SN) burst neutrinos

- At LBNF: the combination of WbLS (THEIA) and liquid argon (DUNE) detectors at the same site -> high-statistics co-detection of neutrinos and antineutrinos.
- Complementarity to JUNO and Hyper-K: opposite side of the Earth -> Earth matter effects
 - Pre-supernova neutrinos

Diffuse supernova neutrino background (DSNB) Diffuse, isotropic flux of v from all SN explosion in the Universe.

- **Cherenkov/Scintillation (C/S) ratio** gives a powerful handle to discriminate atmospheric neutral current background signals;
- substantial increase in event statistics when added to Super-K and JUNO;
- 5σ discovery (125 kton-year): ~8 years (Theia-25) or ~2 years (Theia-100)

Theia: solar neutrinos

Theia can continue Borexino's solar legacy:

- CNO neutrinos (directionality based background rejection, solar metallicity puzzle)
- ⁸B solar neutrinos high-statistics, low-threshold -> new physics in the MSW-vacuum transition region

M. Askins, Z.Bagdasarian et al Eur. Phys. J. C 80, 416

Borexino measurements Nature 562, p 505

Theia: Geoneutrinos

- Rate at Sanford Underground Research Facility (SURF): 26.5 interactions per kT-year
- High statistics (in comparison with existing two measurements)
- Explore geographical variations of the geoneutrino flux

Analysis of antineutrino capabilities of Theia is in preparation

Theia: Neutrinoless Double Beta Decay

Elements for which normal beta decay is suppressed: Germanium, Xenon, Tellurium

Balloon for $0_{VV}\beta$ isotope loaded liquid scintillator

Neutrinos are their own antiparticles Lepton number is not conserved

- violation of total lepton number conservation
- absolute neutrino masses
- mass ordering

Theia: Neutrinoless Double Beta Decay

Phase III

Theia: staged approach to physics goals

Primary physics goal

 $ND: p \to \bar{\nu}K^+$

Reach	Exposure/assumption
$>5\sigma$ for 30% of δ_{CP}	524kt-MW-year
T>3.8 x 10 ³⁴ year	800 kt-year
<1(2)° pointing 20K(5K) events	100(25)kt, 10kpc SN
5σ	125kt-year
<5(10)%	300(62.5)kt-year
2650 events	100 kt-year
T _{1/2} < 1.1 x 10 ²⁸ year (90%C.L.)	800 kt-year (Multi-tonne load in suspended vessel sear

Conclusions

- Progress in the novel target materials and photodetector technologies opened the path for the next-generation neutrinos experiments
- Theia will employ the advantages of these developments

to achieve: low energy threshold, good energy and position resolutions, directionality, large exposure and to tackle a broad physics agenda: neutrino oscillations, solar, supernova neutrinos, and neutrinoless double beta decay

Thank you for your altention!

QUESTIONS ARE WELCOME now

or later @ZaraBagdasarian zara.bagdasarian@berkeley.edu https://www.zarabagdasarian.com

