

# ANNIE

# Roadmap to neutron multiplicity in neutrino interactions

New Directions in Neutrino-Nucleus Scattering (NDNN) 03/18/2021



Michael Nieslony on behalf of the ANNIE collaboration JOHANNES GUTENBERG UNIVERSITÄT MAINZ



# ANNIE

# The Accelerator Neutrino Neutron Interaction Experiment



- **Gd-loaded water Cherenkov detector** placed 100m downstream from target of the Booster Neutrino Beam (BNB) at Fermilab
- Measurement: **final state neutron multiplicity & CC-0π cross-section** in water
- Test of **new technologies** in the fields of fast photosensors (LAPPDs) and detection media (Gd-loaded water/water-based Liquid Scintillators)

### Fermilab Accelerator Complex



### • Neutrino cross-section in water:

Minimize systematic uncertainty in long-baseline neutrino oscillation studies

• Neutron multiplicity:

Help model atmospheric background for DSNB & proton decay searches

Features of ANNIE's measurement:

- Nearby SBND Liquid Argon detector

   → opportunity for combined
   argon/water cross-section analysis



# Roadmap to neutron multiplicity



# Roadmap to neutron multiplicity



 Commissioning & neutron calibration runs with 132 PMTs completed

### 03/18/2021

events /  $m^3$  / 5 × 10<sup>12</sup> POT

• <sup>137</sup>Cs standard candle

### Phase II - Detector setup





Muon Range Detector

# Phase II - Neutron multiplicity components



#### Neutron capture signals



#### 03/18/2021

# Phase II - LAPPDs

### LAPPD: Large Area Picosecond Photo Detector



- 20 cm x 20 cm photodetector with intrinsic position resolution (mm-cm scale)
- Microchannel plate structure with resistive & emissive coating + microstrip anode readout
- Fast detection capabilities (time resolution ~60 ps)
- ANNIE has 5 LAPPDs at hand, characterization ongoing at Fermilab test stand
- Both angular and spatial resolution profit substantially from using 5 LAPPDs



### Phase II - LAPPD characterization

### **Dedicated test stand at Fermilab**



- Systematic tests of all 5 LAPPDs at dedicated facility at Fermilab
- Q.E., gain & timing calibration scans:
  - Movable & motorized LED/laser setup
  - Automated scans over the whole surface
- Deployment planned soon





ANNIE data

### Phase II - Neutrino interactions

### Detect the beam spill in the data

ANNIE Cluster Times (>5 p.e.) - Run 1634



### Event display of beam commissioning neutrino candidate



ANNIE observes neutrino candidates!

2000

00

20000

10000

30000

40000

50000

60000

t<sub>Cluster</sub> [ns]

### Phase II - Muon track reconstruction in MRD

- In-situ calibration of MRD scintillator paddle efficiencies shows good results with  $\epsilon$  > 95%
- Reconstructed muon angle distribution in agreement with MC beam simulations
- Muon characterization in the MRD works as intended







# Phase II - Gadolinium loading

• Custom water purification system developed by UC Davis collaborators:

"V. Fischer et. al, "Development of an ion exchange resin for gadolinium-loaded water" [JINST15 (2020) 07 P07004]

- Nominal Gd loading of 0.2% Gd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> achieved Dec 24th, 2019
- Water transparency stable for more than a year now (LED measurement)









### Phase II - Neutron capture calibration

- AmBe neutron calibration campaign performed in 2020
- Purpose: Neutron detection efficiency map
- Deployment in a UVT acrylic container via 5 deployment ports





#### Neutron time profile



Capture time profile consistent with expectations



### UVT acrylic container

03/18/2021

### Roadmap to neutron multiplicity



• Water-based liquid scintillator volume in ANNIE

# The future: Phase III - Water-based Liquid Scintillator



- Water-based Liquid Scintillator (WbLS): Novel detection medium for which Liquid Scintillator droplets are dissolved in water
- The medium has the following advantages:
  - Directionality & kinematic reconstruction (Cherenkov)
  - High light yield & calorimetric reconstruction (scintillation)
  - Charged particle detection below Cherenkov threshold (protons)
  - High transparency + low cost of water
  - Tunable liquid scintillator concentration, isotope loading



WbLS samples with different concentrations



### • Insertion of a WbLS-volume (500l) into ANNIE

- ▶ Dimensions: cylinder with ~0.8m height, ~0.8m diameter
- Different amounts of LS loading (1% / 5% / 10%)  $\rightarrow$  evaluate benefits on reconstruction
- Show feasibility of WbLS in a neutrino-beam environment

### The future: ANNIE as testbed for next-gen experiments



### • NEO - Advanced Instrumentation Testbed (AIT):

- Remote reactor monitoring through Inverse Beta Decay, 2kt Cherenkov detector
- Both Gd-loaded water / WbLS considered as medium

### • THEIA (25/100):

- > 25kt Cherenkov detector (WbLS) option in one of the DUNE caverns (module of opportunity)
- Broad physics program: Long baseline neutrinos, 0vββ, CNO neutrinos, SN neutrinos, geoneutrinos

# Summary

• ANNIE is a Gd-loaded water Cherenkov detector (26 tons mass) located in the Booster Neutrino Beam at Fermilab

### • Physics measurement goals:

- Neutron multiplicity as a function of primary lepton momentum
- CC- $0\pi$  Neutrino cross-section in water
- Milestones:
  - July 2019: Installation of Inner Structure in the hall, water fill
  - December 2019: Nominal Gadolinium-loading achieved (0.2% weight)
  - ▶ 2020:
    - Detector commissioning, first beam neutrinos detected
    - Active water transparency monitoring (LED)
    - Neutron capture efficiency calibration (AmBe)

# ▶ 2020/2021:

- Characterization of all 5 LAPPDs
- Soon:
  - ANNIE's first LAPPD deployment

### • Future:

Testbed for new detection medium of water-based Liquid Scintillators





Fermi National Accelerator Laboratory Brookhaven National Laboratory Lawrence Livermore National Laboratory Iowa State University University of California, Davis University of California, Irvine University of Chicago

Ohio State University The University of Warwick The University of Edinburgh **T** <sup>7</sup> The University of Sheffield The University of Hamburg The University of Tübingen Johannes Gutenberg University Mainz Erciyes University

Thank you for your attention! Any questions?

### Physics motivation - Inelastic processes



### • Discriminating elastic and inelastic processes

- Misidentification of elastic/inelastic processes results in energy reconstruction bias
- neutron presence indicative of inelastic processes  $\rightarrow$  can help to minimize such biases

### Backup - Inelastic processes



 $\rightarrow$  Move to event topologies (1 $\mu$  + 1/0 $\pi$  + Xn + Yp) instead of MC generator-based categories (CCQE, RES,DIS,...)

 $\rightarrow$  **Neutrons** as possible signs of **inelasticity**  $\rightarrow$  multiplicity measurement by ANNIE

### Backup - DSNB & Proton decay



 $\rightarrow$  Improve signal-to-background discrimination by better models of atmospheric neutron yield

### Backup - Water filtration

- Combination of different subsystems to obtain filtered Gdloaded and ultrapure water
  - Pumps: Transport water
  - UV lamps: Microbes, biological contamination
  - **TOC lamp:** Plastic (carbon) compounds
  - Microfilters: Bacteria, sediments, microbes (5 μm & 0.2 μm version)
  - Ultrafilters: Iron removal (30nm pore size)
  - Anion resin: Nitrates and TOC lamp products





Vincent Fischer, UC Davis

# Backup - Neutron calibration: AmBe source

- The AmBe source is a mixture of <sup>241</sup>Am and <sup>9</sup>Be.
- Produces a neutron and a 4.44 MeV gamma.
- SiPMs and a bismuth germanium oxide (BGO) crystal are used to detect this gamma.
  - High light yield of ~8500 photons per MeV.
  - Emits in a favourable wavelength regime (480 nm peak emission with a range of 375-650 nm).
  - Dense (7.13 g/cm<sup>3</sup>), increasing Compton scatter likelihood.
- The neutron detection efficiency is then determined by searching for the 8MeV gamma cascade produced upon capture.

Leon Pickard, UC Davis



- 1.  $^{241}$ Am decays to  $^{237}$ Np via alpha emission (half-life = 432.2 yr).
- <sup>9</sup>Be can capture the emitted alpha to produce <sup>12</sup>C\* and a neutron.
   <sup>12</sup>C\* produces a prompt 4.44MeV gamma.
- 3. 4.44 MeV gamma can Compton scatter in the BGO crystal this gives us a trigger.
- 4. Neutron thermalises in ANNIE and is captured on Gd.

#### ANNIE

03/18/2021