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INTRODUCTION
Extracting oscillation parameters requires comparing the neutrino flux at near and far detectors
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The flux is extracted from the measured neutrino-nucleus interactions in a detector

Knowledge of the neutrino-nucleus cross section Precision on neutrino-oscillation parameters
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INTRODUCTION
Achieving a robust description of the reaction mechanisms at play in the DUNE energy regime is a 
formidable nuclear-theory challenge
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• Realistic description of nuclear 
correlations 

• Relativistic effects in the current 
operators and kinematics

• Description of resonance-
production and DIS region
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INTRODUCTION
The exclusive neutrino-nucleus cross section can be schematically expressed as 
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• The final state can contain real pions and particles other then protons and neutrons
<latexit sha1_base64="JXHlNShRhE865FqfJ4R3TTjArLU="></latexit>

|fi = | A
f i, | N

p , A�1
f i, | ⇡

k , 
N
p , A�1

f i, . . .

• Detailed information on the hadron final state are crucial for the neutrino energy reconstruction

• A quantum mechanical treatment of exclusive process involves prohibitive difficulties 

• The initial target state can be “exactly” computed within nuclear many-body theory 
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QUANTUM MONTE CARLO
Our intra-nuclear cascade algorithm is based on quantum Monte Carlo calculations
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• First, we perform a variational Monte Carlo calculation
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B. Pudliner et al., PRC 56, 1720 (1997)

• Then, Green’s function Monte Carlo projects out the lowest-energy state
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ET = h T |H| T i � E0
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FIG. 3. Spectra of A=4–12 nuclei. The energy spectra obtained with the NV2+3-Ia chi-

ral interactions are compared to experimental data. Also shown are results obtained with the

phenomenological AV18+IL7 interactions.
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QUANTUM MONTE CARLO
GFMC solves the spectrum of light nuclei with percent-level accuracy

M. Piarulli, AL et al. PRL 120, 052503 (2018)
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ELECTRON SCATTERING FROM QMC

3

yXyy

yXyk

yXy9

yXye

yXy3

ԇ յ�Ӽ
֋ϵ զ(J

2o
਷φ )

:6J* Ԅφս
:6J* Ԅφս�ϵս
SqA�
qQ`H/ /�i�
a�+H�v /�i�

yXyy

yXyk

yXy9

yXye

yXy3

ԇ յ�Ӽ
֋ϵ զ(J

2o
਷φ )

yXyy

yXyk

yXy9

yXye

yXy3

y 8y Ryy R8y kyy k8y jyy j8y 9yy

ԇ յ�Ӽ
֋ϵ զ(J

2o
਷φ )

ᆂ(J2o)

FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!
+
el

d! e�!⌧
R↵(q,!)

[Gp

E
(q,!)]2

, (2)

where Gp

E
(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!el is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵
(q)e�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,

(3)
where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E
(q,!) [15]. The

calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E0) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?

f
� E0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

12C, q=570 MeV

AL et al. PRL 117 082501 (2016)
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Besides the spectrum of light nuclei, QMC has been used to compute a variety of electroweak 
transitions and responses
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We recently carried out first-principle calculation of neutrino-nucleus cross section and 
confronted with MiniBooNE and T2K data

NEUTRINO SCATTERING FROM QMC
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FIG. 4. MiniBooNE flux-folded double differential cross sections per target neutron for νµ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for different ranges of cos θµ. The experimental data and their shape uncertainties
are from Ref. [46]. The additional 10.7% normalization uncertainty is not shown here. Calculated cross sections are obtained
with ΛA =1.0 GeV.

E ≈ 20 MeV). The remaining terms in the δ-function
are the final energies of the struck nucleon and recoiling
(A–1) system of mass mA−1. From these RPWIA

αβ we ob-
tain the corresponding flux-folded cross sections shown
in Figs. 4 and 5 by the short-dashed (black) line labeled
PWIA. Also shown in this figure by the dot-dashed (pur-
ple) line (labeled PWIA-R) are PWIA cross sections ob-
tained by first fixing the nucleon electroweak form factor
entering xαβ(p,q,ω) at Q2

qe, and then rescaling the vari-
ous response functions by ratios of these form factors, as
indicated in Sec. II B.

A couple of comments are in order. First, the cross
sections in PWIA are to be compared to those obtained
with the GFMC method by including only one-body cur-
rents (curves labeled GFMC 1b): they are found to be
systematically larger than the GFMC predictions, par-
ticularly at forward angles. Furthermore, it appears that
the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-

crease produced by two-body currents in the GFMC cal-
culations (difference between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ν case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as θµ changes from 0◦ to about 90◦, the ν cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.
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FIG. 6. T2K flux-folded double differential cross sections per target neutron for νµ-CCQE scattering on 12C, displayed as a
function of the muon momentum pµ for different ranges of cos θµ. The experimental data and their shape uncertainties are
from Ref. [48]. Calculated cross sections are obtained with ΛA =1.0 GeV.

vector form factors in agreement with experimental data
which are of course quite accurate. These calculations
suggest a larger value of ΛA may be appropriate. We
investigate the implications of this finding by presenting
in Fig. 7 the flux-folded cross sections (for MiniBooNE
and selected bins in cos θµ), obtained by replacing in the
dipole parametrization the cutoff ΛA ≈ 1 GeV with the
value Λ̃A ≈ 1.15 GeV. As expected, this leads generally
to an increase of the GFMC predictions over the whole
kinematical range. Since the dominant terms in the cross
section proportional to the transverse and interference re-
sponse functions tend to cancel for νµ, the magnitude of
the increase turns out to be more pronounced for νµ than
for νµ—as a matter of fact, the νµ cross sections are re-
duced at backward angles (0.1 ≤ cos θµ ≤ 0.2). Overall,
it appears that the harder cutoff implied by the LQCD
calculation of GA(Q2) improves the accord of theory with
experiment, marginally for νµ and more substantially for
νµ. In view of the large errors and large normalization un-
certainties of the MiniBooNE and T2K data, however, we

caution the reader from drawing too definite conclusions
from the present analysis. Indeed more precise nucleon
form factors can be obtained through further lattice QCD
calculations or experiments on the nucleon and deuteron,
respectively.

Of course, many challenges remain ahead, to mention
just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [71], could conceiv-
ably be incorporated in the present GFMC approach, it
is out of the question that such an approach could be uti-
lized to describe the ∆-resonance region of the cross sec-
tion or, even more remotely, extended to nuclei with mass
number much larger than 12, at least for the foreseeable
future. In fact, it maybe unnecessary, as more approxi-
mate methods exist to deal effectively with some of these
challenges, including factorization approaches based on
one- and two-nucleon spectral functions [28, 72] or on

MiniBooNE T2K

MEC 
enhancement

AL et al., PRX 10, 031068 (2020)
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The propagation of nucleons through the nuclear medium is crucial in the analysis of electron-
nucleus scattering and neutrino oscillation experiments.

QMC-BASED INTRANUCLEAR CASCADE

Final state interactions

Introduction

MC generators

NuWro

Final state interactions
FSI
Intranuclear cascade
LP effect
Formation time
NOMAD
NC π
Summary

MB NCEL analysis

Backup slides

Tomasz Golan NuWro @ HEP UW 39 / 61

FSI describe the propagation of particles created in a primary
neutrino interaction through nucleus

All MC generators (but GIBUU) use intranuclear cascade model

Ingredients: 
• Propagation of particles  
• Elastic scattering 
• Pion Production  
• Pion Absorption  

Figure from T. Golan

We have developed a semi-classical intra-nuclear cascade (INC) that assume classical 
propagation between consecutive scatterings and use QMC configurations as inputs;



5

FIG. 4: Proton-proton (top panel) and proton-neutron
(bottom panel) correlation functions in carbon from
Green’s function Monte Carlo (red) and mean field

(blue) configurations.

the magnitude of the three-momentum is randomly sam-
pled in the interval [0, kN

F (r)] where kN
F (r) is the Fermi

Momentum defined in terms of the single nucleon den-
sity kN

F (r) = (⇢N (r)3⇡3)1/3 and N = p, n. In the case
of the global Fermi gas, the momentum is determined in
the same way, but kN

F is position independent. The lo-
cal Fermi gas model is known to provide a more realistic
nucleon momentum distribution for finite nuclei than the
global Fermi gas. For this reason, although both mod-
els are implemented in our code, we only present results
based on the local Fermi gas predictions. In the future,
we plan to include more accurate nucleon momentum dis-
tribution, based on state-of-the-art many-body calcula-
tions that properly account for nuclear correlations.

C. Nucleon-nucleon interaction algorithm

To check if an interaction between nucleons occurs,
an accept-reject test is performed on the closest nu-
cleon according to a probability distribution P (b) (see
e.g. Ref. [62] for similar considerations) where b is the
impact parameter. We impose two conditions on this
probability,

P (0) = 1 and

Z 2⇡

0

Z 1

0
d' bdbP (b) = �, (6)

where the cross section � depends on the incoming parti-
cle content and the center-of-mass energy, which is sam-
pled from the nuclear configuration. The second condi-
tion ensures that the mean free path of a nucleon trav-
eling in a medium of uniform density is �mfp = 1/�⇢̄,
where ⇢̄ is the number density.
Two implementations of P (b) have been studied here.

The first we dub the cylinder interaction probability,

Pcyl(b) = ⇥(�/⇡ � b2), (7)

where ⇥(x) = 1 if x � 0, else ⇥(x) = 0. This probability
mimics a more classical, billiard ball like system, where
each billiard ball has a radius ⇡

p
�/⇡. The second

implementation is the Gaussian interaction probability

PGau(b) ⌘ exp

✓
�⇡b2

�

◆
, (8)

which is inspired by the work of Ref. [62]. Both
Pcyl and PGau satisfy the conditions in Eq. (6). We
use the nucleon-nucleon cross sections from the SAID
database [63] obtained using GEANT4 [64], or from the
NASA parametrization [65].

D. Phase space, Pauli blocking and
after-interaction

If an interaction occurred, the phase space of the
outgoing particles is generated using fully di↵erential
nucleon-nucleon cross sections. Note that, at the mo-
ment, we only include protons and neutrons in our INC
model. Pauli blocking enforces Fermi-Dirac statistics for
the nucleons and amounts to testing whether their final-
state momenta are above the Fermi momentum. Two dif-
ferent models of the Pauli exclusion principle have been
approximately implemented. The global and local Pauli
blocking routines essentially forbid a scattering if the mo-
mentum of any of the final state particles is below the av-
erage Fermi momentum (for the global Fermi gas model)
or the local Fermi momentum (for the local Fermi gas
model), respectively. We emphasize again that, although
we have implemented the global Fermi gas model, we do
not report any results using it.
If the interaction took place, the outgoing particles are

both treated as propagating particles, and a formation
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The nucleons’ positions are sampled from GFMC configurations. For benchmark purposes we 
also sampled mean-field (MF) configurations from the single-proton distribution.

QMC-BASED INTRANUCLEAR CASCADE

The differences between GFMC and MF configurations induced by nuclear correlations are 
apparent when comparing the two-body density distributions

4

tic NN and 3N potentials, and consistent one- and two-
body meson-exchange currents [50]. GFMC begins with
the construction of a trial wave function  T that is a
symmetrized product of two- and three-body correla-
tion operators acting on an antisymmetric A-body single-
particle wave function that has the proper quantum num-
bers for the state of interest. The variational parameters
in  T are found by minimizing the energy expectation
value

E0  ET =
h T |H| T i
h T | T i

, (2)

where E0 is the true ground-state energy of the system.
The calculation of ET requires the numerical solution of
a multidimensional integral that is carried out employing
standard Metropolis Monte Carlo sampling in configura-
tion space.

GFMC then projects out the lowest eigenstate  0 of
the given quantum numbers starting from  T by per-
forming a propagation in imaginary time ⌧

| 0i = lim
⌧!1

exp[�(H � E0)⌧ ]| T i. (3)

The propagation | (⌧)i = exp[�(H � E0)⌧ ]| T i is car-
ried out as a series of many small imaginary-time steps
�⌧ . Expectation values of operators are evaluated as
mixed matrix elements O(⌧) = h T |O| (⌧)i, and the
behavior as a function of ⌧ analyzed to obtain con-
verged results. Because H and exp[�(H � E0)⌧ ] com-
mute, the mixed estimate is the exact expectation of
h (⌧/2)|O| (⌧/2)i but linear extrapolations are used to
evaluate other quantities.

In addition to binding energies the GFMC provides
detailed information on the distribution of nucleons in a
nucleus in both coordinate and momentum space, which
are interesting in multiple experimental settings. For ex-
ample, the mixed-estimate of the single-nucleon density
is calculated as

⇢N (r) =
1

4⇡r2
⌦
 T

��
X

i

�(r � |ri|)PN

�� (⌧)
↵
, (4)

where N = p, n; PNi =
1±⌧zi

2 is the neutron or proton
projector operator; and, ⇢N integrates to the number of
protons or neutrons. The two-body density distribution,
yielding the probability of finding two nucleons with sep-
aration r, is defined as

⇢NN (r) =
1

4⇡r2
⌦
 T

��
X

i<j

�(r � |rij |)PNiPNj

�� (⌧)
↵
. (5)

The positions of the constituents protons and neutrons
utilized in the nuclear cascade algorithm are sampled
from 36000 GFMC configurations. We employ the so-
called constrained-path approximation [59] to make sure
that their Monte Carlo weights remain positive, thereby
facilitating their usage in the cascade algorithm. As a
consequence, the single-proton distribution displayed by

FIG. 3: Nucleon density in carbon from Green’s
function Monte Carlo (red) and mean field (blue)

configurations.

the blue solid circles of Fig. 3 is slightly di↵erent from the
results reported in Ref. [60], which have been obtained
performing fully unconstrained imaginary-time propaga-
tions. Since we neglect the charge-symmetry breaking
terms in the Hamiltonian, and since 12C is isospin sym-
metric, the single-neutron distribution is identical to that
of the proton.
For benchmark purposes, we also sample 36000 mean-

field (MF) configurations from the single-proton distribu-
tion. The corresponding single-proton densities coincide
by construction with the GFMC one, as shown in Fig. 3.
However, the di↵erences between GFMC and MF con-
figurations become apparent when comparing the corre-
sponding two-body density distributions represented in
Fig. 4. The short-range repulsive core of the NN in-
teraction prevents two nucleons from being close to each
other. As a consequence, the pp and np GFMC density
distributions are small at short separation distances. Fur-
thermore, the di↵erence between the GFMC pp and np
density distributions around r = 1 fm can be attributed
to the strong tensor correlations induced by the one-pion-
exchange part of the NN interaction, which is further en-
hanced by the two-pion-exchange part of the 3N poten-
tial. Note that the short-range behavior of ⇢NN , which is
largely nucleus independent, does depend strongly on the
NN interaction model [61]. On the other hand, the MF
ones do not exhibit this rich behavior as the correlations
among nucleons are entirely disregarded.

B. Nucleon momentum distribution

As mentioned above, when a nucleon is struck, its mo-
mentum is obtained assuming either a local or global
Fermi gas distribution. In the case of the local Fermi gas,
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FIG. 4: Proton-proton (top panel) and proton-neutron
(bottom panel) correlation functions in carbon from
Green’s function Monte Carlo (red) and mean field

(blue) configurations.

the magnitude of the three-momentum is randomly sam-
pled in the interval [0, kN

F (r)] where kN
F (r) is the Fermi

Momentum defined in terms of the single nucleon den-
sity kN

F (r) = (⇢N (r)3⇡3)1/3 and N = p, n. In the case
of the global Fermi gas, the momentum is determined in
the same way, but kN

F is position independent. The lo-
cal Fermi gas model is known to provide a more realistic
nucleon momentum distribution for finite nuclei than the
global Fermi gas. For this reason, although both mod-
els are implemented in our code, we only present results
based on the local Fermi gas predictions. In the future,
we plan to include more accurate nucleon momentum dis-
tribution, based on state-of-the-art many-body calcula-
tions that properly account for nuclear correlations.

C. Nucleon-nucleon interaction algorithm

To check if an interaction between nucleons occurs,
an accept-reject test is performed on the closest nu-
cleon according to a probability distribution P (b) (see
e.g. Ref. [62] for similar considerations) where b is the
impact parameter. We impose two conditions on this
probability,

P (0) = 1 and

Z 2⇡

0

Z 1

0
d' bdbP (b) = �, (6)

where the cross section � depends on the incoming parti-
cle content and the center-of-mass energy, which is sam-
pled from the nuclear configuration. The second condi-
tion ensures that the mean free path of a nucleon trav-
eling in a medium of uniform density is �mfp = 1/�⇢̄,
where ⇢̄ is the number density.
Two implementations of P (b) have been studied here.

The first we dub the cylinder interaction probability,

Pcyl(b) = ⇥(�/⇡ � b2), (7)

where ⇥(x) = 1 if x � 0, else ⇥(x) = 0. This probability
mimics a more classical, billiard ball like system, where
each billiard ball has a radius ⇡

p
�/⇡. The second

implementation is the Gaussian interaction probability

PGau(b) ⌘ exp

✓
�⇡b2

�

◆
, (8)

which is inspired by the work of Ref. [62]. Both
Pcyl and PGau satisfy the conditions in Eq. (6). We
use the nucleon-nucleon cross sections from the SAID
database [63] obtained using GEANT4 [64], or from the
NASA parametrization [65].

D. Phase space, Pauli blocking and
after-interaction

If an interaction occurred, the phase space of the
outgoing particles is generated using fully di↵erential
nucleon-nucleon cross sections. Note that, at the mo-
ment, we only include protons and neutrons in our INC
model. Pauli blocking enforces Fermi-Dirac statistics for
the nucleons and amounts to testing whether their final-
state momenta are above the Fermi momentum. Two dif-
ferent models of the Pauli exclusion principle have been
approximately implemented. The global and local Pauli
blocking routines essentially forbid a scattering if the mo-
mentum of any of the final state particles is below the av-
erage Fermi momentum (for the global Fermi gas model)
or the local Fermi momentum (for the local Fermi gas
model), respectively. We emphasize again that, although
we have implemented the global Fermi gas model, we do
not report any results using it.
If the interaction took place, the outgoing particles are

both treated as propagating particles, and a formation

There is an enhancement of the neutron-proton two-body density distribution, consistent with 
the dominance of neutron-proton over proton-proton SRC pairs for a variety of nuclei
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QMC-BASED INTRANUCLEAR CASCADE
To check whether an interaction has occurred we 
consider an accept/reject algorithm based on a 
“cylinder” and a “gaussian” distributions
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We have also implemented a standard mean 
free path approach
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PROTON-CARBON CROSS SECTION
Reproducing proton-nucleus cross section 
measurements is an important test for INC. 

• We define a beam of protons with kinetic 
energy Tp, uniformly distributed over an 
area A;

• We propagate each proton in time and 
check for scattering at each step;

• Monte Carlo cross section is defined as:

�MC = A
Nscat

Ntot

Solid lines: elastic NN cross-section 
Dashed lines: total NN cross section 

7

path, allowing us to proceed to more complex tests of our
INC.

B. Proton-carbon Scattering Data

Reproducing the proton-nucleus cross section measure-
ments is an important test of the accuracy of the INC
model. Proton-nucleus scattering probes the nucleon-
nucleon cross section which is typically divided into two
pieces, the reaction and the elastic cross sections,

�tot = �R + �el. (12)

In the elastic part, no energy is transferred into nuclear
excitation and the nucleus remains unbroken, that is n+
A ! n+A. The reaction cross section includes transition
to nuclear excited states, n + A ! n + A⇤, as well as
inelastic reactions n + A ! X.

Several experiments have been carried out to deter-
mine the total reaction cross section, see for example
Refs. [66–71]. The latter is typically obtained by measur-
ing the total cross section from the change in intensity of
a calibrated proton beam traversing a carbon target and
then subtracting the calculated elastic cross section.

We compute �R neglecting Coulomb interactions, as
they are expected to contribute mostly to �el. We obtain
the proton-carbon scattering cross section by the follow-
ing simulation (with a di↵erent setup from the proposed
algorithm of Fig. 2). We define a beam of protons with
energy E, uniformly distributed over an area A (orthogo-
nal to the proton momenta). Note that A � ⇡R2, where
R is the radius of the carbon nucleus. The carbon nucleus
is situated in the center of the beam. We propagate each
proton in time and check for scattering at each step. The
Monte Carlo reaction cross section is then defined as the
area of the beam times the fraction of scattered events,
namely,

�MC = A
Nscat

Ntot
. (13)

This is not exactly the experimentally measured reaction
cross section. Angular and/or momentum acceptances
for the attenuated beam are finite, and we do not in-
clude these e↵ects in our calculation. Nevertheless, we
do not expect such e↵ects to change our results signif-
icantly, and thus �MC should be a good approximation
of the reaction cross section. Moreover, imposing Pauli
blocking on both outgoing nucleons will e↵ectively sup-
press the contribution of elastic transitions.

The two panels of Fig. 6 display the proton-carbon
scattering cross sections as a function of the proton ki-
netic energy. In the upper panel our Monte Carlo simu-
lations are compared with experimental data in the en-
tire energy region in which data are available [71], while
the lower panel focuses on proton kinetic energies below
200 MeV. The curves correspond to di↵erent implemen-
tations of the INC. These implementations are composed
of three ingredients, namely,

FIG. 6: Proton-carbon scattering total cross section as
a function of the incoming proton kinetic energy. In the

upper panel the entire energy range for which
experimental data are available is shown. In the lower
panel the low energy region is magnified. The red and
blue curves correspond to the cylinder algorithm where
the mean field (MF) and quantum Monte Carlo (QMC)
configurations have been used, respectively. The green
and orange curves are the same but for the Gaussian
interaction probability. The results displayed in purple
refers to the mean free path (MFP) calculations. The
solid and dashed curves corresponds to the use of the

GEANT4 [64] and NASA [65] parametrization of the cross
section in the interaction probability, respectively. The

data points are from Ref. [71]

1. Nuclear configuration: quantum Monte Carlo
(QMC) or mean field (MF);

2. Interaction model: cylinder (cyl), Gaussian
(Gauss), or mean free path (MFP);

3. Nucleon-nucleon cross section: elastic (El) or total
(Tot).

J. Isaacson, et al., PRC 103, 015502 (2021)

See also S. Dytman et al., 2103.07535 
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PROTON-CARBON CROSS SECTION
Reproducing proton-nucleus cross section 
measurements is an important test for INC. 

• We define a beam of protons with kinetic 
energy Tp, uniformly distributed over an 
area A;

• We propagate each proton in time and 
check for scattering at each step;

• Monte Carlo cross section is defined as:

�MC = A
Nscat

Ntot

Solid lines: elastic NN cross-section 
Dashed lines: total NN cross section 

J. Isaacson, et al., PRC 103, 015502 (2021)

See also S. Dytman et al., 2103.07535 
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path, allowing us to proceed to more complex tests of our
INC.

B. Proton-carbon Scattering Data

Reproducing the proton-nucleus cross section measure-
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model. Proton-nucleus scattering probes the nucleon-
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�tot = �R + �el. (12)
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to nuclear excited states, n + A ! n + A⇤, as well as
inelastic reactions n + A ! X.

Several experiments have been carried out to deter-
mine the total reaction cross section, see for example
Refs. [66–71]. The latter is typically obtained by measur-
ing the total cross section from the change in intensity of
a calibrated proton beam traversing a carbon target and
then subtracting the calculated elastic cross section.

We compute �R neglecting Coulomb interactions, as
they are expected to contribute mostly to �el. We obtain
the proton-carbon scattering cross section by the follow-
ing simulation (with a di↵erent setup from the proposed
algorithm of Fig. 2). We define a beam of protons with
energy E, uniformly distributed over an area A (orthogo-
nal to the proton momenta). Note that A � ⇡R2, where
R is the radius of the carbon nucleus. The carbon nucleus
is situated in the center of the beam. We propagate each
proton in time and check for scattering at each step. The
Monte Carlo reaction cross section is then defined as the
area of the beam times the fraction of scattered events,
namely,

�MC = A
Nscat

Ntot
. (13)

This is not exactly the experimentally measured reaction
cross section. Angular and/or momentum acceptances
for the attenuated beam are finite, and we do not in-
clude these e↵ects in our calculation. Nevertheless, we
do not expect such e↵ects to change our results signif-
icantly, and thus �MC should be a good approximation
of the reaction cross section. Moreover, imposing Pauli
blocking on both outgoing nucleons will e↵ectively sup-
press the contribution of elastic transitions.

The two panels of Fig. 6 display the proton-carbon
scattering cross sections as a function of the proton ki-
netic energy. In the upper panel our Monte Carlo simu-
lations are compared with experimental data in the en-
tire energy region in which data are available [71], while
the lower panel focuses on proton kinetic energies below
200 MeV. The curves correspond to di↵erent implemen-
tations of the INC. These implementations are composed
of three ingredients, namely,

FIG. 6: Proton-carbon scattering total cross section as
a function of the incoming proton kinetic energy. In the

upper panel the entire energy range for which
experimental data are available is shown. In the lower
panel the low energy region is magnified. The red and
blue curves correspond to the cylinder algorithm where
the mean field (MF) and quantum Monte Carlo (QMC)
configurations have been used, respectively. The green
and orange curves are the same but for the Gaussian
interaction probability. The results displayed in purple
refers to the mean free path (MFP) calculations. The
solid and dashed curves corresponds to the use of the

GEANT4 [64] and NASA [65] parametrization of the cross
section in the interaction probability, respectively. The

data points are from Ref. [71]

1. Nuclear configuration: quantum Monte Carlo
(QMC) or mean field (MF);

2. Interaction model: cylinder (cyl), Gaussian
(Gauss), or mean free path (MFP);

3. Nucleon-nucleon cross section: elastic (El) or total
(Tot).
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FIG. 7: Carbon transparency as a function of the
proton kinetic energy. The di↵erent curves indicate
di↵erent approaches used as described in Fig. 6. The
experimental data are taken from Refs. [4, 6, 7, 74–76]

energy and scattering angle of the electron, one can un-
ambiguously define the momentum q transferred to the
target nucleus. The direction and the momentum of the
nucleon in the final state has to be determined apply-
ing energy- and momentum-conservation relations and
accounting for the Fermi motion of the struck nucleon in
the initial state. It follows that defining the kinematics of
the hadronic final state after the hard scattering depends
on the nuclear model of choice. However, in the analysis
of di↵erent experiments, the data are given as a function
of the average nucleon momentum (and kinetic energy)
given by p = q (Tp =

p
|q|2 + m2

N � mN ).
In Fig. 7 we compare the nuclear transparency data

from Refs. [4, 74] to our predictions. The di↵erent lines
are the same as for Fig. 6. We find an overall satis-
factory agreement between the Gaussian and cylinder
curves with the experimental data once inelastic e↵ects
are taken into consideration; this corresponds to the re-
sults using the NASA parametrization for the nucleon-
nucleon cross sections. For moderate to large values of
the proton kinetic energy, pions play an important role
in quenching the transparency. Moreover, the Gaussian
and cylinder curves exhibit correct behavior consistent
with the data also for small Tp where the simplified MFP
model described above fails. As in Fig. 6, we observe
very small di↵erences between the QMC and MF calcu-
lations. For low and intermediate kinetic energies, the
transparency obtained from the MFP approach is much
smaller than the corresponding results for the cylinder
and Gaussian curves.

Finally, we discuss the origin of the discrepancies be-
tween the MFP and the cylinder algorithm with MF
configurations for the p-carbon cross section and carbon
transparency. Both approaches rely on the single-nucleon
density distribution to sample the initial nucleon posi-

p
�/⇡

d`

r1
p

�/⇡

d`
x
r1

FIG. 8: Left panel: a schematic picture of an external
proton scattering o↵ the nucleus. The distance from the

proton to the center of the nucleus is r1, and the
propagation step is d`. The radius of the cylinder is

given by
p

�/⇡ where � is the interaction cross section
between the proton and a background particle; d` is

also the height of the cylinder. Right panel: same as for
the left one, but for a nucleon kicked inside the nucleus.
This follows what is done in the nuclear transparency

event simulations.

tions (nuclear correlations are neglected) but use di↵er-
ent definitions of the interaction probability. The left
panel of Fig. 8 schematically shows one contribution to
the p-carbon cross section in which the proton is at a dis-
tance r1 larger than the nuclear radius. In the cylinder
algorithm, the interaction probability is equal to one if a
particle is present in the volume defined by: V = d` · �.
Both �pp and �np have a maximum for low proton mo-
mentum values. Hence, for low momenta, the probability
of interaction could be non-vanishing even when the pro-
jectile proton is far from the center of the nucleus.
On the other hand, within the MFP approach, if the
probe is outside the nucleus then the approximation of a
constant density ⇢(r1) = 0 within the volume V = d` · �
yields a vanishing interaction probability. This di↵erent
behaviour leads to a lower p-carbon cross section using
the MFP approach, as observed in Fig. 6. When com-
puting the nuclear transparency we kick a nucleon which
is located inside the nucleus as displayed in the right
panel of Fig. 8. In this case, assuming a constant density
is more likely to overestimate the interaction probabil-
ity, especially for low momenta where the cross section is
larger. This observation is consistent with Fig. 7 where
the MFP curves predict a larger number of interactions,
and therefore a lower nuclear transparency, for small Tp.

D. Correlation e↵ects

The role played by nuclear correlations in final state in-
teractions of the recoiling nucleon has been investigated
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NUCLEAR TRANSPARENCY
The nuclear transparency yields the average probability that a struck nucleon leaves the 
nucleus without interacting with the spectator particles 

• The nuclear transparency is measured in 
(e,e’p) scattering experiments

• Simulation: we randomly sample a nucleon 
inside the nucleus from our configurations 

Solid lines: elastic NN cross-section 
Dashed lines: total NN cross section 

See also S. Dytman et al., 2103.07535 

• We give this nucleon a kinetic energy Tp  and 
propagate it through the nuclear medium

TMC = 1� Nhits

Ntot

J. Isaacson, et al., PRC 103, 015502 (2021)
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Nuclear correlations in the final state do not seem 
to play a key role in the transparency; 

• We generate histograms of the distance 
traveled by a struck particle before the first 
interaction takes place

• When using QMC configurations, the hit 
nucleon is surrounded by a short-distance 
correlation hole

• For σ=0.5 mb the MF distribution peaks 
toward smaller distances than the QMC one;

• For σ=50 mb large cylinder, the base of the 
cylinder covers the correlations hole; 

10

FIG. 9: The four panels corresponds to histograms of the distance traveled by a struck particle before the first
interaction takes place for di↵erent values of the interaction cross section. The results in blue and red correspond to

MF and QMC initial nucleon configurations, respectively. For each of the panels we also report the fixed
cross-section used, the total number of events generated, and the number of hits for each configuration.

in Refs. [72, 77–80]. As discussed in Ref. [81] the hit nu-
cleon is surrounded by a short-distance correlation hole
produced by both the Pauli principle and the repulsive
nature of realistic nuclear interactions. Because of this
correlation hole, the stuck nucleon is expected to freely
propagate for ⇠ 1 fm before interacting with any of the
background particles. To test the validity of these ob-
servations in our INC model, in Fig. 9 we report the
histograms of the distance traveled by a struck nucleon
before its first interaction occurs—we stop the simulation
afterwards—with each panel corresponding to a di↵erent
value of the interaction cross section. In order to gauge
the e↵ect of nuclear correlations, the initial positions of
the nucleons are sampled from either MF (blue) or QMC
(red) configurations. A random nucleon inside the nu-
cleus is recoiled and assigned a momentum of 200 MeV.
Pauli Blocking has been neglected here to isolate the de-
pendence of the results on the spatial distribution of the
nucleons. We employ the cylinder algorithm and use a
fixed cross section—which determines the cylinder base
area—varying between 0.5 and 100 mb.

For � = 0.5 and 10 mb, the volume spanned by the
propagating particle is very small. The first and second
panels of Fig. 9 clearly show the MF distribution peak-
ing toward smaller distances than the QMC distribution.
This di↵erence primarily originates from the short-range
repulsion of the AV18 potential that reduces the prob-
ability of finding two nucleons close to each other and
allows the struck particle to propagate longer before in-
teracting. This e↵ect is more pronounced for cross sec-
tions below about 10 mb = 1 fm2 since correlations a↵ect
nucleon configuration for inter-particle distances within
1 ⇠ 2 fm, as can be seen in Fig. 4. On the other hand,
larger cross sections yield larger cylinders. In this case,
the propagating particle becomes less sensitive to the lo-
cal distribution of nucleons and more sensitive to the in-
tegrated density in a larger volume, reducing the e↵ect
of correlations. For these larger cross sections, the MF
and QMC event distributions follow the same trend, as
can be seen in the lower panels of Fig. 9, corresponding
to � = 50 and 100 mb.

In each panel we also report the number of hits and the
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FIG. 9: The four panels corresponds to histograms of the distance traveled by a struck particle before the first
interaction takes place for di↵erent values of the interaction cross section. The results in blue and red correspond to

MF and QMC initial nucleon configurations, respectively. For each of the panels we also report the fixed
cross-section used, the total number of events generated, and the number of hits for each configuration.

in Refs. [72, 77–80]. As discussed in Ref. [81] the hit nu-
cleon is surrounded by a short-distance correlation hole
produced by both the Pauli principle and the repulsive
nature of realistic nuclear interactions. Because of this
correlation hole, the stuck nucleon is expected to freely
propagate for ⇠ 1 fm before interacting with any of the
background particles. To test the validity of these ob-
servations in our INC model, in Fig. 9 we report the
histograms of the distance traveled by a struck nucleon
before its first interaction occurs—we stop the simulation
afterwards—with each panel corresponding to a di↵erent
value of the interaction cross section. In order to gauge
the e↵ect of nuclear correlations, the initial positions of
the nucleons are sampled from either MF (blue) or QMC
(red) configurations. A random nucleon inside the nu-
cleus is recoiled and assigned a momentum of 200 MeV.
Pauli Blocking has been neglected here to isolate the de-
pendence of the results on the spatial distribution of the
nucleons. We employ the cylinder algorithm and use a
fixed cross section—which determines the cylinder base
area—varying between 0.5 and 100 mb.

For � = 0.5 and 10 mb, the volume spanned by the
propagating particle is very small. The first and second
panels of Fig. 9 clearly show the MF distribution peak-
ing toward smaller distances than the QMC distribution.
This di↵erence primarily originates from the short-range
repulsion of the AV18 potential that reduces the prob-
ability of finding two nucleons close to each other and
allows the struck particle to propagate longer before in-
teracting. This e↵ect is more pronounced for cross sec-
tions below about 10 mb = 1 fm2 since correlations a↵ect
nucleon configuration for inter-particle distances within
1 ⇠ 2 fm, as can be seen in Fig. 4. On the other hand,
larger cross sections yield larger cylinders. In this case,
the propagating particle becomes less sensitive to the lo-
cal distribution of nucleons and more sensitive to the in-
tegrated density in a larger volume, reducing the e↵ect
of correlations. For these larger cross sections, the MF
and QMC event distributions follow the same trend, as
can be seen in the lower panels of Fig. 9, corresponding
to � = 50 and 100 mb.

In each panel we also report the number of hits and the

NUCLEAR TRANSPARENCY
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FUTURE DIRECTIONS

• Implement the “hard interaction” using the spectral-function formalism to better simulate 
transparency. Encouraging preliminary results (inclusive cross section reproduced) 

• Better treatment of in-medium effects (binding, effective masses, position-dependent momentum 
distributions); 

• Inclusion of pion-production in the elementary vertex and of pion-nucleon interactions in the 
propagation;  

• Use QMC configurations to include quantum effects in the propagation (Glauber Theory)  
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SCATTERING VS TRANSPARENCY  
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INPUT CROSS SECTION "�+FmT, LL AMi2`�+iBQMb

(a�A. /�i�#�b2) - (Lm+HX AMbi`mKX J2i?X � 8ye- k8y UkyyjV) - (L�a� h2+?MB+�H S�T2` kR8RRe Ukyy3V)

CX Ab��+bQM �miQK�iBM; G2TiQMB+ h2MbQ` R f j 62`KBH�#

We use the nucleon-nucleon cross sections from the SAID (elastic) database obtained using 
GEANT4, or from the NASA (total) parametrization.

"�+FmT, LL AMi2`�+iBQMb

(a�A. /�i�#�b2) - (Lm+HX AMbi`mKX J2i?X � 8ye- k8y UkyyjV) - (L�a� h2+?MB+�H S�T2` kR8RRe Ukyy3V)

CX Ab��+bQM �miQK�iBM; G2TiQMB+ h2MbQ` R f j 62`KBH�#


