Comparison of Validation Methods for Final State Interactions in Hadron Production Experiments

Speaker: J.Tena Vidal

University of Liverpool, Dept. of Physics, Liverpool L69 7ZE, UK, j.tena-vidal@liverpool.ac.uk

17 March 2021

New Directions in Neutrino-Nucleus Scattering

Introduction

- Neutrino interaction modelling is essential to address backgrounds and systematic errors in ν measurements
- ν measurements depend on FSI modelling
 - $\rightarrow\,$ Hard to model and approximations are required
 - $\rightarrow~$ One of the largest uncertainty sources
- At $KE_{hadron} < 1$ GeV, the reinteraction probability in Ar
 - p: 40 50 %
 - π^+ : <~ 75 (strong E dependence!)%

MC generators are an essential tool

For this work, models are checked against two different general kinds of data

- Total reaction cross section data
- Transparency data

First time to be discussed in detail

- $\sigma^{\it reac}$ provides a general validation method for codes
- $\sigma^{\it reac}$ includes all final state channels except elastic
- Measured using hadron beams
- Interaction occurs on the periphery of the nucleus
- Large body of data is available

Transparency (T) is defined as the probability of the ejected hadron to not re-interact

- Hadron starting location related to the matter density, same as neutrino experiments
- Until now, no code has been validated against transparency data
 - \rightarrow First comparison by NuWro [Niewczas and Sobczyk(2019)]
- Some electron data exists for carbon and heavier elements → No data on argon

- Understanding relationship between σ^{reac} and transparency is primary goal
 - σ^{reac} and transparency go in opposite directions as function of KE, but how?

Nuclear effects that modify transparency and σ^{reac}

Nuclear effects can significantly alter the transparency and reaction cross section predictions

1. Formation zone

 $\rightarrow\,$ Affects only transparency calculations

2. Medium effects

ightarrow Different effect on T and $\sigma^{\it reac}$

3. N-N correlations

 $\rightarrow\,$ Negligible effect for $\sigma^{\it reac},$ though significant for ${\cal T}$

Different approaches are followed by each MC generator

• Comparing results from GENIE, NEUT and NuWro:

S. Dytman,¹ Y. Hayato,² R. Raboanary,³ J.T. Sobczyk,⁴ J. Tena-Vidal,⁵ and N. Vololoniaina³ ¹University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh, PA 15260, USA ²ICRR ³University of Antananarivo, Antananarivo, Madagascar ⁴University of Wrocław, Institute of Theoretical Physics, Wrocław, Poland ⁵University of Liverpool, UK

- Study FSI effects of p and π^+ in carbon (this talk) and argon (backup slides)
- Comparison between total reaction cross section and transparency from a simulation view point
- Understand the role of the different nuclear effects
 - $\rightarrow~$ Different implementations in each MC generator
- Paper available in ArXiv: https://arxiv.org/pdf/2103.07535.pdf

GENIE hA2018 and hN2018, NuWro, and NEUT share the following characteristics:

- The nucleus is modelled as an ensemble of independent particles
- Nucleon momenta described by a Local Fermi gas distribution
- Nucleons are bound: binding energy corrections are applied
- Other effects at the interaction vertices (Pauli blocking, medium corrections, etc.) are implemented separately

Figure: From Tomasz Golan talk

Similarities between GENIE, NEUT and NuWro

- GENIE hA2018 and hN2018, NuWro, and NEUT are based on **custom cascade models** (INC):
 - Particles are moved by a small step
 - 0.05 fm in GENIE
 - 0.2 fm in NuWro and NEUT

- The probability of not interacting is $P(\lambda) = \exp(-\lambda/\tilde{\lambda})$, where $\tilde{\lambda}$ is the mean free path
- In INCL++, the entire hadron-residual system changes through time steps and interactions occur when $d_{min} < \sqrt{\sigma/\pi}$
- Different methods for propagating hadrons (time) in the nuclear medium exist:
 - See next talk by [Isaacson et al.(2020)]
 - The nucleon position/momentum is generated with the QMC method where all nucleons are interacting with realistic potentials.
 - Cylinder interaction approach: probe-nucleon separation doesn't have to be small.

Relevant features:

- Pauli blocking is considered
- Medium corrections implemented for pions at the delta region only [Salcedo et al.(1988)]
 - $\rightarrow\,$ Otherwise, they use free $\pi\text{-N}$ and nucleon nucleon scattering
 - $\rightarrow\,$ Same approach followed by NuWro and GENIE

Process	р	π^+
Pauli Blocking	Yes	Yes
Medium Effects	None	$\mathit{KE}_{\pi}=85-350~\mathrm{MeV}$
NN correlations	None	None
Formation zone	None	Yes

- They adjust π-N cross section to get good agreement with σ^{reac}_{πN} data
- Formation zone effect based on SKAT data for pion production

• Medium corrections for pions and protons

For π : same as NEUT

For p:

 \rightarrow Elastic:

[Pandharipande and Pieper(1992)]

 $\label{eq:section} \begin{array}{l} \rightarrow \mbox{ Inelastic: in-medium microscopic cross} \\ \mbox{ section } \sigma^*_{\rm NN} = (1 - \eta \cdot \rho / \rho_0) \sigma^{\rm free}_{\rm NN} \\ \mbox{ being } \rho \ (\rho_0) \mbox{ the local (saturation)} \\ \mbox{ density} \end{array}$

Process	р	π^+
Pauli Blocking	Yes	Yes
Medium Effects	Yes	Yes
NN correlations	Yes	-

• NN correlations modify the nucleon density

 $\rho_{\rm eff, IPSM}^{[1]}(\vec{r_2}|\vec{r_1}) = \rho_{\rm A-1}^{[1]}(\vec{r_2})g(|\vec{r_{21}}|)N(|\vec{r_1}|)$

GENIE Specifics - hA2018 and hN2018

hA2018:

- Empirical approach
- Single interaction based on hadron-nucleus data
- Medium effects for nucleonnucleon [Pandharipande and Pieper(1992)]

hN2018:

- Similar to NEUT and NuWro
- Nucleons don't propagate below an energy cutoff proportional to 12A^{0.2} MeV

	Generator	Pauli	medium	Cut
		blocking	effects	off
Proton				
	GENIE hA2018	None	Yes	None
1	GENIE hN2018	None	Yes	12A ^{0.2} MeV
			Pion	
	GENIE hA2018	None	none	none
	GENIE hN2018	None	$T_{\pi}=85-350~{ m MeV}$	None

No Pauli Blocking or formation zone considered in any of the models

1. Sophisticated nuclear model:

- All nucleons are placed in a square well whose depth and range depends on the nucleon position
- 2. Cascade model approach
- 3. Main benefits:
 - Pauli blocking is applied
 - Improved momentum distribution and binding energy correction
 - Medium corrections applied naturally
 - Propagating hadrons are off-shell
 - The Δ propagates independently with competing interactions and decay possibilities

Event generation for transparency

- · Identical interactions are chosen according to same nucleon density distribution
- Neutrino beam: not all codes have electron modes implemented
- NC EL and NC RES interactions to model proton and pion transparency respectively
- In this talk we focus on carbon
- Monte Carlo transparency, i.e. no experimental acceptance applied

Comparisons between σ^{reac} and T of protons on carbon

- At high kinetic energies ($KE_p > \sim 200$ MeV), nuclear effects are small
- NN correlations influence transparency and not $\sigma^{\it reac}$
 - $\rightarrow~{\rm NuWro}~\sigma^{\it reac}$ agrees with the other calculations
 - $\rightarrow\,$ NuWro $\,{\cal T}$ is higher than the others due to NN correlations

Comparisons between σ^{reac} and T of protons on carbon

The models diverge at low kinetic energy where nuclear effects are bigger

- Rise in σ^{reac} as a consequence of a rise in σ_{pN}
- σ^{reac} peaks and decreases at lower energies due to Pauli blocking and medium corrections
 - Peak at \sim 30 MeV observed for NuWro and INCL++
 - GENIE hA and hN have no Pauli blocking, but GENIE hN cutoff avoids rise in $\sigma^{\rm reac}$
 - NEUT starts diverging from others at ${\sim}80$ MeV due to Pauli blocking
 - INCL++ has the best agreement with $\sigma^{\it reac}$ data

Comparisons between σ^{reac} and T of π^+ on carbon

- The $\Delta(P_{33}(1232))$ resonance effect on σ^{reac} and T is seen at $KE_{\pi} \sim 165$ MeV
 - $\rightarrow\,$ In agreement between calculations
 - \rightarrow Underestimating experimental points
- Spread of π^+ simulations is larger. Predictions affected by
 - 1. Formation zone (NEUT only)
 - 2. Different treatment of high mass resonances (NuWro, GENIE INCL++)
 - 3. INCL++ predicts a larger σ^{reac} at the Δ peak
 - \rightarrow Treat Δ as a propagating particle
 - 4. INCL++ Binding energy correction for the propagating particle shifts the delta dip in *T*
 - $\rightarrow\,$ Similar to Salcedo-Oset medium corrections but beyond

16 / 37

Computation of acceptance correction factors from electron beams is beyond this study

- NuWro made transparency calculations with and without the experimental acceptance effects [Niewczas and Sobczyk(2019)].
- The ratio is used to estimate the impact of acceptances on the other model results
- The estimated acceptance corrections put all calculations in **reasonable agreement** with the existing data
 - Short range NN correlations increase NuWro transparency at all KE

Conclusions

- NEUT, NuWro and GENIE codes use different INC approximations, esp. nuclear effects
- Transparency gives information about FSI effects as they would apply neutrino oscillation experiments No data on argon. Mostly T data on proton at high KE
- Nuclear effects on $\sigma^{\it reac}$ and ${\cal T}$ are studied for ${\it p}$ and π^+ on carbon
- Strong energy dependence that has significant effects on $\ensuremath{\mathcal{T}}$
- At high KE,
 - Variations among σ^{reac} and T results are roughly similar
 - Good agreement with carbon proton transparency data for all codes
 - No major errors in existing codes against data now available are apparent
- For low KE protons, differences between MC generators are notable due to nuclear effects
 - $\rightarrow\,$ GENIE INCL++ has best nuclear model and best agreement with data
 - $\rightarrow\,$ Big uncertainty for ν oscillation experiments depending on models for low KE nucleons
- Weak A dependence No significant changes for argon, see backup

Very **interesting possibilities** for new transparency measurements!

Thank you!

References I

- K. Niewczas and J. T. Sobczyk, Phys. Rev. C **100**, 015505 (2019), 1902.05618.
- J. Isaacson et al. (2020), 2007.15570.
- L. Salcedo et al., Nucl. Phys. **A484**, 557 (1988).
- V. R. Pandharipande and S. C. Pieper, Phys. Rev. C45, 791 (1992).
- A. Boudard et al., Phys. Rev. C 87, 014606 (2013), 1210.3498.

Backup slides

GENIE hA2018 and hN2018, NuWro, and NEUT share the following characteristics:

- Custom cascade models (INC)
- Other effects (Pauli blocking, medium corrections, etc.) are implemented separately

Cascade model approach

- 1. Calculate mean free path: $\tilde{\lambda} = (\sigma_p \rho_p(\mathbf{r}) + \sigma_n \rho_n(\mathbf{r}))^{-1}$
- 2. Move propagating particle by a small step λ (typically 0.2fm)
- 3. If particle in nucleus, generate interaction with $P(\lambda) = \exp(-\lambda/\tilde{\lambda})$
- 4. (*) Apply Pauli blocking (NEUT, NuWro and INCL++)
- 5. Repeat until the particle leaves the nucleus

How are reaction cross section and transparency related?

Toy model

- Analitic formulas describe most basic physics
 - $\rightarrow~$ Only nuclear density and hadron-nucleon cross section
- The analytic formula for ratio allows the calculation of T from σ^{reac} independent of particle choice.
- Expected relationship between T and σ^{reac} :
 - $\lim_{\sigma^{reac} \to 0} T(\sigma^{reac}) \to 1$
 - $\lim_{\sigma^{reac} \to \sigma^{reac} \max} T(\sigma^{reac}) \to 0$
 - T is large when σ^{reac} is small and vice versa

Toy model prediction for GENIE transparency on carbon

- Transparency toy model predictions are obtained from $\sigma^{\textit{reac GENIE}}$
- Stripped-down GENIE agrees well with the predictions for transparency on p and π^+ on carbon

The toy model is a powerful tool to study nuclear effects that modify transparency only

- INCL: Intranuclear cascade model
 - It describes the two steps model of a spallation reaction: the cascade stage and the evaporation stage
 - INCL++ is coupled with a set of interface to de-excitation model (Gemini++, ABLA++, ABLA07 (the default), SMM.
 - simulate reactions induced by nucleons, pion and light ion on any target nucleus.
- Included in GENIE as an alternate FSI model
- INCL++ will be available in the GENIE 3.2.0 release
- Also implements the cascade approach
- Used for:
 - Production of hadron-nucleus cross-section.
 - Production of lepton-hadron production interactions.

• **Propagation**: stepped in time, all particle are in movement (projectile and nucleon of the target) The time step:

$$t_{step} = -rac{ec{d}^0_{ab}\cdotec{v}_{ab}}{v^2_{ab}}$$

- \vec{d}_{ab}^0 : the initial relative position between the two nucleon,
- \vec{v}_{ab} : the relative propagation velocity;
- Collision happens when two particles reach their minimum distance of approach d_{min}
 - Decision test by $d_{min} < \sqrt{\sigma^{tot}/\pi}$, where σ^{tot} is the total cross section.
- Stopping time of the cascade: $t_{stop} = t_0 \cdot f_{stop} \frac{A_T}{208}^{0.6}$, $t_0 = 70 fm/c$, $f_{stop} = 1$

INCL++ stopping time/ (time step)

The distance minimum of approach:

$$d^2_{min} = (ec{d}^0_{ab})^2 + t_{step}ec{d}^0_{ab}\cdotec{v}_{ab}$$

 $t_{stop} = 70(A/208)^{0.6} = 29.8 \cdot A^{0.16}$, A : mass number of the target, and t_{stop} has a unit fm/c.

• If the projectile is a pion
$$t_{stop} = 30.18 \cdot A^{0.17}$$

- If the projectile is a nucleon $t_{stop} = 29.8 \cdot A^{0.16}$
- Above 2 AGeV the stopping time depends on the energy $t_{stop} = (5.8E4 T_{Lab})/5.6E4$ with $T_{Lab} = \frac{E_{Kin}}{A}$, E_{Kin} : Kinetic Energy of the incident particle and A his mass number.
- If the incoming particle is slow: $t_{stop} = 2 \cdot r_{max}/v$ with r_{max} is the universe radius of the projectile particle and v his velocity.

When the cascade stop, all Δ are forced to decay and conservation laws of the number of mass, charge number and the energy are applied.

Nuclear effects on protons

• Nuclear effects are handled in similar ways by the different codes:

Generator	Pauli	medium	NN
	blocking	effects	correlations
GENIE hA2018	None	[Pandharipande and Pieper(1992)]	None
GENIE hN2018	None	[Pandharipande and Pieper(1992)]	None
GENIE INCL++	Yes	[Boudard et al.(2013)]	None
NuWro 19.02	Yes	[Pandharipande and Pieper(1992)]	[Pandharipande and Pieper(1992)]
NEUT v5.4.0.1	Yes	None	None

- No formation zone is considered by any of the codes for protons

• Nuclear effects are handled in similar ways by the different codes:

Generator	Pauli	medium	Formation
	blocking	effects	zone
GENIE hA2018	None	none	none
GENIE hN2018	None	Ref. [Salcedo et al.(1988)]	None
GENIE INCL++	Yes	Ref. [Boudard et al.(2013)]	None
NuWro 19.02	Yes	Ref. [Salcedo et al.(1988)]	None
NEUT v5.4.0.1	Yes	Ref. [Salcedo et al.(1988)]	Yes

Atomic mass dependence

- The calculations can be directly compared with the results shown in the talk.
- The importance of nuclear medium effects can be expected to increase as the size of the nucleus increases. However,
 - The gross features of each model are unchanged
 - Basic effects scale linearly with A
- No data on argon
- The increase in A makes the curves spread more extreme
- A dependence is not significant or the models fail to account properly for it

Atomic mass dependence

- The calculations can be directly compared with the results shown in the talk.
- No data on argon
- The increase in A makes the curves spread more extreme
- Medium effects make the Δ peak wider for pions with a corresponding effect in transparency.
- A dependence is not significant or the models fail to account properly for it

Medium effects in GENIE

- Here we show the impact of the Salcedo-Oset [Salcedo et al.(1988)] medium effects on π^+ for carbon for σ^{reac} and T
 - The model includes a modification of Δ self-energy due to medium effects via the local density approximation.
 - The 80-350 MeV range of applicability is also allowed to work at $KE_{\pi} < 80$ MeV (small effects).
 - Small discontinuity at 350 MeV.
- When medium effects are removed, no nuclear effects remain $\rightarrow \sigma_{\pi N}$
- The effect is a reduction about 10% from σ^{reac} at the cross section peak and an increase of about 15% to T.

Nucleon-nucleon medium effects in GENIE

- Nucleon-nucleon medium effects are included with Pandharipande and Pieper [Pandharipande and Pieper(1992)] model (local density approximation)
 - Implemented as a set of look-up tables as a function of nucleon energy and nuclear density for a variety of nuclei
 - Small dependence on nucleus handled with a linear interpolation between tables
- Largest effect is found at low KE where the interaction cross section is large and nuclear effects are important.
- The effect is a decrease in σ^{reac} and increase in $\mathcal T$

Short N-N correlations in NuWro

- Short N-N correlations increase *T* by 10-15% in the whole range of proton kinetic energies.
- Because of nucleon-nucleon correlations, the probability of having another nucleon in a sphere of radius ~ 0.8 fm around any nucleon is strongly suppressed.
 - Interactions typically occur in the central region of nucleus with higher density.
 - Due to correlation effects there, nucleons are more likely to leave this region avoiding any reinteraction.
- Correlations do not affect reaction cross section where only the single nucleon density is relevant.

Formation zone in NEUT

- NEUT implements a formation zone effect based on SKAT data for pions
- The pions production point is shifted by $L_{FZ} \cdot (-\log(rand[0, 1]))$. $L_{FZ} = p/\mu^2$, where p is the momentum and $\mu = 0.08$ GeV/c²
- Interactions are suppressed by giving the particle a region where it won't interact
- Similar effect to that of correlations
- Increases the π^+ transparency for a wide range of energies
- Could be easily tested in a pion electro-production experiment

"Direct" Comparisons

- Once the NuWro NN-correlations are removed, the results for proton-carbon have a good agreement at $KE_p \sim 200$ MeV
 - Lack of model dependence there
- NuWro and GENIE *hN* are in agreement indicating very similar implementation of the medium corrections.
- NEUT doesn't have the medium corrections that are in both NuWro and GENIE *hN* and this is shown to be a significant effect
 - The agreement must be caused by other differences such as the choice of nucleon-nucleon interactions.

"Direct" Comparisons

- With the NEUT formation zone removed, the comparison for π⁺-carbon becomes more straightforward, but it is not simple.
- All calculations have medium corrections but GENIE hN does not agree with the rest
- NuWro and NEUT agree with each other and GENIE hN has a different shape and larger magnitude.
 - Preliminary explorations indicate that $\sigma^{\rm reac}_{\pi N}$ employed different
- Calculations agree on the depth of the dip due to the Δ resonance
- At the lowest energies, GENIE *hN* has a larger transparency than the others due to lack of Pauli blocking.

