MINERvA's Recent Results and Data Preservation Effort NDNN 2021

Alejandro Ramírez Delgado

University of Pennsylvania

March 16 2021

- MINERvA Experiment in a Nutshell
- **2** ME ν_{μ} 3D CCQE in CH
- ${\small \textcircled{\ one of the set of the se$
- Oata Preservation Effort
- Onclusions
- Ø Backup

MINERvA Experiment in a Nutshell

MINERvA Detector

- Located upstream of the MINOS ND, it consisted of an "inner" detector surrounded by calorimeters.
- The inner upstream "target" region with passive targets of different material.
- The inner downstream "tracker" region, with plastic scintillator.

MINERvA's Data

• ME/LE ratio of recorded events \sim 13 in ν_{μ} and \sim 40 in $\overline{\nu}_{\mu}$ mode.

Thanks to Fermilab Accelerator Division for all the beam!

MINERvA's Catalogue

- 34 Publications: 22 ν_{μ} , 10 $\overline{\nu}_{\mu}$, 2 ν_{e} .
- The large ME sample, will:
 - Enable statistical limited channels.
 - Increase the precision of previous results.

MINERvA Products - Flux Constraint

• Neutrino-electron scattering ME sample, was used to reduce the fractional uncertainty on the flux, from 7.6% to 3.9%.

0.2 700 0.18 1021 Fractional Flux Uncertainty 0.16 839 Unconstrained 600 N Events / 2.0 GeV 0.14 500 Constrained 0.12 400 38 0. 300 DED 0.08 200 0.06 0.0 100 0.02 Data / 1.5 1 Simulation 0.7 Constrained / 0.7 0.65 0.65 0.65 0.7 0. 18 20 0 2 10 12 16 20 14 18 Electron Energy (GeV) E, (GeV)

PhysRevD.100.092001

MINERvA Products - MINERvA Tune v1

- GENIE 2.12.6 + The Following Additions:
- Nieves 2P2H model. Added 2P2H from electron scattering data.
- Valencia RPA for QE. Suppress QE events as a function of Q^2 .
- ANL and BNL data used to suppress non-resonant pions.
- MINERvA's LE low recoil fit applied to 2P2H events.

u_{μ} 3D CCQE in CH

CCQE Interactions

- Basic picture of CC QE: ν_{μ} interacts with nucleon, producing a muon and recoil nucleon of the proper charge.
- E_{ν} reconstruction with muon kinematics only (in principle).

Motivation - ME ν_{μ} 3D CCQE

- Explore previously unavailable regions such as high Q_{QE}^2 .
- This is possible with the fine slicing of the data, due to the ME high statistics.
- It's the first analysis of its kind in the few GeV region.

Signal Definition

- Any number of nucleons
- No mesons, or heavy baryons.
- Gammas < 10 MeV allowed (Deexcitation gammas)
- Muon angle with regards to the beam < 20 degrees

Initial and Final State Interactions

- The nuclear medium matters!
- CCQE 0π , defined "in terms of FSI particles."

Event Selection

- PID-based selection of tracked particles
- Veto Michel electrons (reject pions).
- Set maximum number of isolated energy deposits.
- Set maximum extra recoil energy for un-tracked activity.
- Muon matched in the MINOS detector.

ME ν_{μ} 2D CCQE Results

• The ME 2D analysis showed improved sensitivity at high Q_{QF}^2

PhysRevLett.124.121801

QE-Like Definition of Signal and Background

 ν_{μ} 3D CCQE

Which means Final State particles may be originated due to any of these processes, but they look like QE

ME ν_{μ} 3D CCQE - Some Conclusions

ME ν_{μ} 3D CCQE - Some Conclusions

$\overline{ u}_{\mu}$ 2D CCQE in CH

Motivation - ME $\overline{\nu}_{\mu}$ 2D CCQE

- Complement of the 2D LE anti-neutrino, and the 2D ME neutrino results.
- Important probe at high Q^2_{QE} , where models fail to describe the data.

Signal Definition

- Any number of nucleons.
- No mesons, or heavy baryons.
- Gammas < 10 MeV allowed (Deexcitation gammas).
- $\bullet\,$ Muon angle with regards to the beam <20 degrees.
- Proton kinetic energy > 120 MeV.

Initial and Final State Interactions

Remember, the nuclear medium matters!

Event Selection

- Set maximum number of isolated energy deposits.
- Set maximum extra recoil energy for un-tracked activity.
- Muon reconstructed in the MINOS detector.

NEW!!!

Muon Transverse Momentum (GeV/c)

NEW!!!

Muon Longitudinal Momentum GeV/c

NEW!!!

NEW!!!

$\nu_{\mu} \text{ CC Coherent } \pi^{+} \text{ in C, CH,}$ Fe and Pb

Coherent Interactions

- Characterized by a low momentum transferred to the nucleus |t|, which is left in its ground state
- Phenomenology according to PCAC Models. MINERvA uses the one by Rein and Sehgal.

Low Energy CC Coherent Puzzle Solved by MINERvA

- Previously unobserved in the CC channel at lower energies.
- MINERvA observed the interaction by fully containing the pion, and looking at |t| instead of Q².

Motivation - ME ν_{μ} CC COH π^+

- ME complement of the LE CH analysis.
- Look at the interaction in heavier nuclei like Iron and Lead.
- Perform a simultaneous measurement in different materials, for exploring the A-Scaling of the interaction.

The Target Region

- He, H_2O , C, Fe and Pb targets for A-dependence studies.
- Position and thickness are for energy and areal acceptance purposes.

 ν_{μ} CC COH π^+

Signal Definition

- Negative muon and positive pion originated from the same vertex.
- No other particles created in the interaction vertex.
- Muon reconstructed in the MINOS detector.

Event Selection

- Low vertex energy.
- Pion-like PID.
- Low momentum transferred to the nucleus.
- Muon reconstructed in the MINOS detector.

ME ν_{μ} CC COH π^+ - Preliminary

- Preliminary cross section in the CH "tracker" target.
- Consistency with LE analysis.
- ME analysis has not included diffractive contribution.

ME ν_{μ} CC COH π^+ - Preliminary

- Preliminary cross section in the CH "tracker" target.
- Consistency with LE analysis.
- ME analysis has not included diffractive contribution.

Momentum Transfer to the Nucleus |t| - Preliminary

- Strong indication of CC COH π^+ in Iron and Lead, for the first time.
- CH sample is the largest statistical sample of the interaction.
- A sample from a "pure" carbon target, is also under study.

NEW!!!

Momentum Transfer to the Nucleus |t| - Preliminary

- Strong indication of CC COH π^+ in Iron and Lead, for the first time.
- CH sample is the largest statistical sample of the interaction.
- A sample from a "pure" carbon target, is also under study.

NEW!!!

Data Preservation Effort

MINERvA's Data Relevance

- Relevant both theoretical and experimentally, particularly for DUNE.
- Although due to its high statistics, energy range, in both ν_{μ} and $\overline{\nu}_{\mu}$ modes, it isn't hard to envision many other applications.
- Of special importance is the data simultaneously taken in different materials: H, He, C, O, Fe and Pb.

MINERvA's Data and Analysis Infrastructure for the Future

- Good old data needs to be revisited as models evolve.
- However, our ability to access it, might go from challenging to impossible.
- Ideally every experiment's data would be accessible in the future.
- MINERvA has started doing it, why don't you all follow?

- Access to "Data" (Recorded and Simulated).
- A Data Analysis Infrastructure.

- Access to "Data" (Recorded and Simulated).
- A Data Analysis Infrastructure.

What We Will Deliver

- Access to "Data" (Recorded and Simulated).
- A Data Analysis Infrastructure.

What We Will Deliver

- Access to "Data" in the form of a single ROOT tuple, with low- and high-level reconstructed objects.
- A MINERvA Analysis Toolkit "MAT".
 - Infrastructure for producing new, and already published results.
 - It includes the parallel treatment of systematic uncertainties.
 - All, using data from the ROOT tuple.
- Plus a paper! https://arxiv.org/abs/2009.04548

Final Goal

• Deliver a state-of-the-art infrastructure to analyze all this data

	POT (×10 ²⁰)		$ \nu_{\mu} $ Interactions		Publications	
	LE	ME	LE	ME	LE	ME
$ u_{\mu}$	4.0	12.1	\gtrsim 300k	\gtrsim 4M	22	2 + ??
$\overline{ u}_{\mu}$	1.7	12.4	\gtrsim 50k	$\gtrsim 2 {\sf M}$	10	??

So users can:

- Reproduce MINERvA published result.
- Produce new results!

- MINERvA's ME Effort is getting closer to produce a lot of interesting results.
 - Reproducing LE results with higher statistics and precision.
 - Including brand new results!
- The CCQE analyses have taken the lead in the ME era, with one published result, and two more coming soon.
- More exclusive channels have been enabled, specially in the "target region", also due to the increase in statistics, and are getting closer to completion, such as the CC Coherent π^+ .
- Not happy with all that, MINERvA has started developing an infrastructure to make all its results and data, available for the physics community! ;D

Backup

QE Kinematics

• Free nucleons at rest.

$$E_{
u,QE} = rac{M_p^2 - (M_n - E_b)^2 - M_\mu^2 + 2(M_n - E_b)E_\mu}{2(M_n - E_b - E_\mu + P_\mu\cos(heta_\mu))}$$

$$Q^2_{QE}=2E_{\mu,QE}\left(E_
u-P_\mu\cos\left(heta_\mu
ight)
ight)-M_\mu^2$$

- E_{ν} , E_{μ} and E_{b} , are the neutrino, muon and binding energy, respectively.
- M_x represents the particle "x" mass.

CC COH Kinematics

• Considering the nucleus at rest, and the energy transfer to it, negligible, the neutrino energy is expressed like:

$$E_{
u}\simeq E_{\mu}+E_{\pi}$$

• With that assumption, $|t| = |(p_{\nu} - p_l - p_{\pi})^2|$ can be expressed in terms of the μ and π kinematics like:

$$|t| \simeq \left(\sum_{i=l,\pi} p_T^i\right)^2 + \left(\sum_{i=l,\pi} \left(E^i - p_L^i\right)\right)^2$$

• Which after deploying the algebra is written like:

$$egin{aligned} |t| &\simeq |2\left(E_{\mu}+E_{\pi}
ight)\left(E_{\mu}-p_{\mu}\cos heta_{
u\mu}
ight)-m_{\mu}^{2}\ &-2\left(E_{\pi}^{2}-\left(E_{\mu}+E_{\pi}
ight)p_{\pi}\cos heta_{
u\pi}+p_{\mu}p_{\pi}\cos heta_{\mu\pi}
ight)+m_{\pi}^{2} \end{aligned}$$

"A Priori" ME Flux Prediction

• From fits "with" and "without" constrained beam parameters, it was determined the muon energy scale was shifted by 3.6% (1.8σ).

Leading Systematics

- ν_{μ} 3D CCQE, and $\overline{\nu}_{\mu}$ 2D CCQE
 - Flux
 - Muon Energy Scale
 - Cross Section Model: Uncertainty on the QE axial mass / FSI Models.
- ν_{μ} CC COH π^+
 - Muon Energy
 - Flux
 - Cross Section Model: FSI Models.

Fiducial Volume for the CC COH π^+ in the Passive Materials

Front View of Passive Materials

Cross Section Extraction Formula

FSI in Resonance Background - ν_{μ} 3D CCQE

 Neutron-Proton separation in the RES background contribution

Low Recoil and its Fit

• A low-recoil inclusive sample saw important differences at both, low and large momentum transfer.

- The LE analysis showed improvements implementing RPA and 2P2H contributions, but tensions remained.
- An empirical fit obtained from that analysis has been successful in describing new data.

Low Recoil and its Fit (Continued)

• The ME analysis is implementing this fit, plus new techniques to study this, using many more statistics.

