#### Neutrino-Nucleon Form Factors from Lattice QCD

Aaron S. Meyer (asmeyer.physics@gmail.com)

UC Berkeley/LBNL

March 16, 2021

New Directions in Neutrino Nucleus Scattering

#### Outline

- Introduction
  - Motivation
  - Interaction Modes
  - z expansion
- (High-Level) LQCD Results
  - Fermilab Lattice gA
  - Callat g<sub>A</sub>
  - Quick survey of  $g_A$ ,  $r_A^2$
- Future Prospects
  - QE
  - RES
  - NN
- Conclusions

# Introduction

### Challenges with Oscillation Experiments

Deep Underground Neutrino Experiment - Flagship \$1b experiment at LBNF

Measure osc. prob. over first two oscillation peaks  $\implies E_{\nu}$  btw. [0.5, 10] GeV

[1512.06148[physics.ins-det]] 0.20 1300 km Osc. prob. is fn of  $L/E_{\nu}$ 0.18 Normal MH  $\implies$  must classify events by  $E_{\nu}$ 0.16  $\delta_{CP} = -\pi/2$ 0.14  $\delta_{CP} = 0$ Neutrinos from secondary beam  $= +\pi/2$ 0.12 🕞  $\implies$   $E_{\nu}$  not known event by event 0.10 کے 0.08 θ., = 0 (solar term)  $\implies$   $E_{\nu}$  inferred from distribution 0.06 0.04 0.02 0.00 10-1 10 Neutrino Energy (GeV)

Many requisite inputs difficult/impractical to measure from expt

 $\implies$  Need ambitious theory support to supplement the experimental effort!

#### **Final State Interactions**

Liquid Argon target Nuclear xsec  $\implies$  nuclear modeling

Nuclear amplitudes constructed from one/few nucleon response

Event characteristics change in nuclear medium

In general:  $E_{\nu} \neq E_{\text{vis.}}$  $\implies$  Must infer  $E_{\nu}$  statistically from Monte Carlo



### Neutrino-Nucleon Interaction Modes



## z Expansion Fit to QE $F_A$

- Dipole has strict Q<sup>2</sup> shape, inconsistent w/ QCD
- Dipole FF ansatz significantly underestimates FF uncertainty



- Nucl. xsec uncertainty from FF same size as data-MC tensions
- Source of tensions unclear btw. nucleon/nuclear



• Model-independent parameterization Order of mag. increase in  $\delta\sigma$ 



#### Leptonic vs Hadronic



Correlated differences between data & MC in leptonic, hadronic models

Balancing act to reconcile two variables

Insufficient model to describe interactions?

## Moving Forward

Room for improvement, but what is needed? Ideal: Modern high stats  $\nu$ -D<sub>2</sub> scattering bubble chamber expt Some community push, safety concerns

 $\implies$  LQCD as a alternative/complement to expt

- $\checkmark~$  No nuclear effects
- ✓ Realistic uncertainty estimates
- $\checkmark$  Systematically improvable
- ✓ Computers are (relatively) inexpensive



#### How can Lattice Help?

Lattice is well suited to compute matrix elements:



$$\mathcal{M}_{
u_{\mu}n \to \mu p} = \langle \mu | (V - A)_{\mu} | \nu \rangle \langle p | (V - A)_{\mu} | n \rangle$$

# Lattice QCD

### Lattice QCD: Formalism 1/2

Numerical eval of path integral Quark, gluon DOFs —

$$\langle \mathcal{O} 
angle = rac{1}{Z} \int \mathcal{D} \psi \, \mathcal{D} \overline{\psi} \, \mathcal{D} U \, \exp(-S) \, \mathcal{O}_{\psi} \, [U]$$

Few inputs -

Computational:  $am_{(u,d),\text{bare}}$  $am_{s,\text{bare}}$  $\beta = 6/g_{\text{bare}}^2$ 

Scale setting: e.g.  $\frac{M_{\pi}}{M_{\Omega}}$ ,  $\frac{M_{K}}{M_{\Omega}}$ ,  $M_{\Omega}$ one per computational input

Results — first principles predictions of QCD  $M_{\rm hadron}, \; \langle {\rm F} | \mathcal{O} | {\rm I} \rangle$ 

Euclidean time  $\implies C(t) \sim e^{-M \cdot t}$ 

"Complete" error budget  $\implies$  extrapolation in *a*, *L*, ( $M_{\pi}$ )



### Lattice QCD: Formalism 2/2

Correlation functions computed in euclidean time:

2-point function  $\langle \mathcal{O}_1(t)\mathcal{O}_2(0) \rangle = \sum_n \langle 0|\mathcal{O}_1|n \rangle \langle n|\mathcal{O}_2|0 \rangle e^{-E_n t}$ 3-point function  $\langle \mathcal{O}_1(t)\mathcal{O}_2(\tau)\mathcal{O}_3(0) \rangle = \sum_{mn} \langle 0|\mathcal{O}_1|n \rangle \langle n|\mathcal{O}_2|m \rangle \langle m|\mathcal{O}_3|0 \rangle e^{-E_n(t-\tau)-E_m \tau}$ 

Large t: excited states decay away, signal-to-noise degrades

Extrapolate in ensemble parameters to arrive at physical point

| a  ightarrow 0              | (continuum limit)       |
|-----------------------------|-------------------------|
| $L \to \infty$              | (infinite volume limit) |
| $M_{\pi} 	o M_{\pi}^{phys}$ | (chiral limit)          |

#### Word of caution:

Many collaborations will compare experiment to unextrapolated results... These values will have uncontrolled systematics. Make sure you know what you are looking at!

#### Fermilab Lattice — $M_N$

Nucleon mass — 
$$C_{2pt}(t) \sim \sum_n z_n z_n^{\dagger} e^{-E_n t}$$
,  $z_n = \langle 0 | \mathcal{O} | n \rangle$ 

Demonstration of method: Baryons w/ "Highly-Improved Staggered Quarks" (HISQ) Additional SU(4) "taste" symmetry Baryon octet  $\rightarrow$  baryon 572-plet

Complicated group thy, cheaper computation (1-comp spinors)

```
3 ensembles: all M_{\pi}^{\text{phys}}; various a, L
```

#### Analysis credit: Yin Lin



#### Fermilab Lattice — $g_A$ , $g_V$

Axial charge —  $C_{3pt}(t,\tau) \sim \sum_{mn} z_n z_m^{\dagger} \langle n | A_{\mu} | m \rangle e^{-E_n(t-\tau) - E_m \tau}$  $\langle N | A_{\mu} | N \rangle \sim g_A$ 

Single ensemble:  $M_\pi pprox 305 \; {
m MeV}$ 

World-first 3-point fn w/ HISQ

```
Interpreting results requires SU(2)_{flavor} \times SU(4)_taste \subset SU(8) CG coefs/Wigner-Eckart
```



#### Analysis credit: Yin Lin

#### Callat — $g_A$

Left: O(1%) on  $g_A$  using Feynman-Hellman inspired technique:

$$\underbrace{\frac{dE_{\lambda}}{d\lambda}}_{\text{2-pt}} = \underbrace{\langle \psi_{\lambda} | \frac{dH_{\lambda}}{d\lambda} | \psi_{\lambda} \rangle}_{3-pt} \quad \text{w/ source term} \quad \lambda \int d^4x \ \mathcal{A}_{\mu}(x)$$

Right: Work in progress -

One ensemble:  $a \approx 0.09$  fm,  $M_{\pi} \approx 310$  MeV

5-state fit, detailed analysis of excited state contamination

Compare w/ traditional three-point method



#### Survey — $g_A$

State of field circa 2019 summarized in white paper, written for nonpractitioners: [Eur.Phys.J.A 55 (2019)]

Historically low  $g_A$  attributed to N excitations (N $\pi$ , RES) led to apparent violations of PCAC relation

Now:



Aaron S. Mever

Section: Lattice QCD

## Survey — $r_A^2$

Avoid  $M_A$ : only makes sense in dipole  $\implies r_A^2 = -(6/g_A)dF_A/dQ^2|_{Q^2=0}$  $\implies r_{A,dipole}^2 = (1 \text{ GeV}^2/m_A^2) \times 0.466 \text{fm}^2$ 

Most collaborations have adopted z expansion parameterization Uncertainties will continue to decrease w/ time

Opinion: Still too early by few years - wait for resolution of excited state issues



# Prospects

#### Timeline

Very rough sketch of my interpretation of timeline for LQCD computations



#### Forward-Looking: QE FFs

High-precision meas.  $\langle N | \mathcal{J}(\vec{q}, \nu) | N \rangle \sim F_A(Q^2)$ ,  $F_V(Q^2)$ , Realistically:  $Q^2 \sim 0 - 1 \text{ GeV}^2$ 

Reduce uncertainties of axial/pseudoscalar FFs Fill in where difficult/impractical to get expt data

Resolve tensions btw vector FF parameterizations

Discrepancy of proton mag FF  $\implies$  uncertainty floor for axial FF



#### Forward-Looking: Resonant Transitions

Constrain amplitudes/FFs that are inaccessible to expt

 $\langle N\pi | \mathcal{J}_{\mu}(ec{q},W) | N 
angle$  [res.+nonres.]  $\sim C_{5A}(Q^2)$ 

Theoretically & computationally challenging:

- $\implies$  hard cutoff at  $N\pi\pi$  threshold (for now)
- $\implies$  raise  $M_\pi$  to circumvent,  $\Delta \rightarrow$  stable

Dense spectrum of states

 $\implies$  In practice requires  $N\pi$ ,  $(N\pi\pi)$  operators







### Forward-Looking: NN g<sub>A</sub>

 $\begin{array}{l} \langle \textit{NN} | \mathcal{J}_{\mu} | \textit{NN} \rangle \sim \textit{F}_{V}^{D_{2}}, \textit{F}_{A}^{D_{2}} \\ \hline \textit{Direct comparisons to } \textit{D}_{2} \textit{ scattering, nucl. model} \\ \implies \textit{Test nucl. corrections to QE assumption on } \textit{D}_{2} \\ \hline \textit{Signal to noise exponentially degrades} \sim e^{-(2M_{N}-3M_{\pi})t} \\ \implies \textit{heavy } \textit{M}_{\pi} \textit{ required (for now)} \end{array}$ 

Nuclear models w/ large  $M_{\pi}$  could offer direct comparisons in near future



### **Closing Remarks**

Nuclear xsecs necessary for  $\nu$  oscillation experiments, but nucleon amplitude uncertainties still leave something to be desired —

- Nuclear corrections make extraction of nucleon amplitudes difficult
- Nucleon amplitudes from D<sub>2</sub> have large uncertainties
- New  $D_2$  data not forthcoming (yet)

In absence of modern  $D_2$  expt, LQCD can fill missing pieces to puzzle —

- Improved stats on QE form factors
- Resolve tensions in vector form factor parameterizations
- Compute amplitudes that are difficult/impractical to measure in expt
- Match directly to (small) nuclear target data/models

Lots of work to be done, but path forward is clear!