Polarization effects in ν -nucleon interactions

Beata Kowal, Krzysztof Graczyk

University of Wroclaw

Phys. Rev. D 101, 073002 Phys. Rev. D 97, 013001 Phys. Rev. D 99, 053002 Acta Phys. Pol. B 48, 2219 Acta Phys. Pol. B 50, 1771

- 2 Quasielastic scattering
 - Formalizm of CCQE
 - Polarization observables
- **3** Single Pion Production
 - Formalizm of SPP
 - Polarization observables

4 Conclusion

Neutrino interaction

Neutrino energy $E_{\nu} \sim 1$ GeV (accelerator neutrino experiments)

deep inelastic scattering DIS Neutrino Reactions at Accelerator Energies, Llewellyn Smith Phys.Rept. 3 (1972)

CCQE

- more precise measurements of F_A of the nucleon are needed
- an opportunity for searching for physics beyond the Standard Model

SPP

- procedures of testing SPP models to reduce model dependency
- studying of resonance and nonresonat background amplitudes, in particular relative phase between them

Quasielastic scattering

CCQE channels $\nu_l + n \rightarrow l^- + p$ $\bar{\nu}_l + p \rightarrow l^+ + n$

Vector-axial structure of nucleon vertex

$$\Gamma^{\mu}_{+}(q) = \gamma_{\mu}F_{1}^{V} + q_{\mu}\frac{F_{3}^{V}}{2M} + i\sigma^{\mu\nu}q_{\nu}\frac{F_{2}^{V}}{2M} - \left(\gamma_{\mu}F_{A} + q_{\mu}\frac{F_{P}}{2M} + i\sigma^{\mu\nu}q_{\nu}\frac{F_{3}^{A}}{M}\right)\gamma_{5}$$

1st class current, 2nd class current (SCC) - nonstandard interaction SCC were considered theoretically and experimentally. No significant effect was found.

■ Time reversal symmetry ⇒ real form factors

Conserved vector current CVC $\implies F_3^V = 0$ (weak F_1^V, F_2^V are related to the EM ones)

Partial conservation of axial current PCAC \implies $F_P \sim F_A$

- Proposing observables sensitive to the axial form factor
- Proposing observables sensitive to the beyond standard model contribution
- We propose polarization observables

Polarization properties of QE

Not discussed yet:

- Polarized target asymmetry
- Double-spin asymmetries
- Triple spin asymmetry

authors	papers	investigated particle polarisation	
S. L. Adler	II Nuovo Cimento (1955-1965) 30, 1020 (1963)	charged lepton and recoil nucleon	
C. H. Llewellyn Smith	Phys. Rept. 3, 261 (1972)	charged lepton and recoil nucleon	
K. Hagiwara et al.	Nucl. Phys. B668, 364 (2003)	au-lepton	
K. S. Kuzmin et al.	Nucl. Phys. Proc. Suppl. 139, 154(2005), Mod. Phys. Lett. A19, 2919 (2004)	au-lepton	
K. M. Graczyk	Nucl. Phys. A748, 313 (2005)	au-lepton	
M. Valverde et al.	Phys. Lett. B642, 218 (2006)	charged lepton	
J. E. Sobczyk et al.	Phys. Rev. C100, 035501 (2019)	charged lepton	
N. Jachowicz et al.	Phys. Rev. Lett. 93, 082501 (2004)	recoil nucleon	
A. Fatima et al.	Phys. Rev. D98, 033005 (2018)	charged lepton and recoil nucleon (T-violation and SCC)	
S. M. Bilenky et al.	Phys. Part. Nucl. Lett. 10, 651 (2013), J. Phys. G40, 075004 (2013)	recoil nucleon (the axial contribution to the polar- ization)	
M. M. Block	Symmetries in Elementary Particle Physics (1965) p. 341	charged lepton and recoil nucleon (proposal of the measurement)	

CCQE

Channels:

$$u_{\mu} + \mathbf{n}
ightarrow \mu^{-} + \mathbf{p} \quad , \quad ar{
u}_{\mu} + \mathbf{p}
ightarrow \mu^{+} + \mathbf{n}$$

Angular distribution of the particles, in the laboratory frame ζ , ξ , χ - spin components of the lepton, the nucleon and target

Three directions: L (longitiudinal), T (transverse), N (normal)

March 16, 2021

CCQE

The differential cross-section

$$\begin{array}{ll} \displaystyle \frac{d\sigma}{dQ^2} & = & \displaystyle \frac{d\sigma_0}{dQ^2} \left(1 + \mathcal{P}^{\mu}_{l} s^{l}_{\mu} + \mathcal{T}^{\mu}_{N} s^{N}_{\mu} + \mathcal{P}^{\mu}_{N'} s^{N'}_{\mu} + s^{l}_{\mu} s^{N'}_{\nu} \mathcal{A}^{\mu\nu}_{lN'} \right. \\ & + & \displaystyle s^{l}_{\mu} s^{N}_{\nu} \mathcal{B}^{\mu\nu}_{lN} + s^{N}_{\mu} s^{N'}_{\nu} \mathcal{C}^{\mu\nu}_{NN'} + s^{l}_{\mu} s^{N}_{\nu} s^{N'}_{\alpha} \mathcal{D}^{\mu\nu\alpha}_{lNN'} \right) \end{array}$$

Seven spin observables:

- 1 recoil polarization asymmetry $\mathcal{P}^{\mu}_{N'}$
- 2 lepton polarization asymmetry \mathcal{P}^{μ}_{I}
- 3 polarized target asymmetry \mathcal{T}^{μ}_{N}
- 4 lepton-recoil asymmetry $A_{IN'}^{\mu\nu}$
- 5 target-lepton asymmetry $B_{lN}^{\mu\nu}$
- 6 target-recoil asymmetry $C_{NN'}^{\mu\nu}$
- 7 target-lepton-recoil asymmetry $\mathcal{D}_{INN'}^{\mu\nu\alpha}$

$$\begin{split} \mathcal{P}_{l}^{X} &= \mathcal{P}_{l}^{\mu} \zeta_{\mu}^{X}, \quad \mathcal{A}_{lN'}^{XY} = \mathcal{A}_{lN'}^{\mu\nu} \zeta_{\mu}^{X} \xi_{\nu}^{Y} \\ \mathcal{D}_{lNN'}^{XYZ} &= \mathcal{D}_{lNN'}^{\mu\nu\alpha} \zeta_{\mu}^{X} \xi_{\nu}^{Y} \chi_{\alpha}^{Z} \end{split}$$

$$\mathcal{P}_{I}^{X} = \frac{\mathrm{d}\sigma(\zeta_{X}) - \mathrm{d}\sigma(-\zeta_{X})}{\mathrm{d}\sigma(\zeta_{X}) + \mathrm{d}\sigma(-\zeta_{X})}$$
$$\mathcal{A}_{IN'}^{XY} = \frac{\sum_{a,b=\pm 1} a \cdot b \cdot \mathrm{d}\sigma(a\zeta_{X}, b\xi_{Y})}{\sum_{a,b=\pm 1} \mathrm{d}\sigma(a\zeta_{X}, b\xi_{Y})}$$
$$\mathcal{D}_{INN'}^{XYZ} = \frac{\sum_{a,b,c=\pm 1} a \cdot b \cdot c \cdot \mathrm{d}\sigma(a\zeta_{X}, b\xi_{Y}, c\chi_{Z})}{\sum_{a,b,c=\pm 1} \mathrm{d}\sigma(a\zeta_{X}, b\xi_{Y}, c\chi_{Z})}$$

CCQE

Form factors

Axial form factor (dipole parametrization)

$$\mathcal{F}_{\mathcal{A}}(q^2) = rac{\mathcal{G}_{\mathcal{A}}}{\left(1-rac{q^2}{M_{\mathcal{A}}^2}
ight)^2}$$

* we've checked also non-dipole parametrisation

 $g_A = 1.2723 \pm 0.0023$ $M_A = 1.014 \pm 0.014 GeV$ Cross-section is dominated by axial term.

New measurements of F_A parameters are still needed

 $F_A(0) = g_A$ M_A obtained from

- ν-deuterium scattering
- CCQE, nuclear targets

 M_A - single spin asymmetry

 $ar{
u}_{\mu} p
ightarrow \mu^+ n$

P_N^L P_N,L 0.5 0 -0.5 Sign and -1 magnitude of P_{N'} the compo-0.5 nents depend 0 strongly on -0.5 MΔ -1 1.2 0 0.4 0.8 0 0.4 0.8 1.2 0.4 0.8 1.2 Q² [GeV²] Q² [GeV²] Q² [GeV²]

 $M_A = 0.8, 0.9, 1.0, 1.1, 1.2 \text{ GeV}, F_3^A = 0$, neutrino energy E = 1 GeV. Normal asymmetry is 0

M_A - double spin asymmetry

 $ar{
u}_{\mu} p
ightarrow \mu^{+} n$

M_A - double spin asymmetry

$$ar{
u}_{\mu} p
ightarrow \mu^{+} n$$

 $C_{NN'}^{TT}$ - transverse-transverse target-recoil asymmetry $C_{NN'}^{LL}$ - normal-normal target-recoil asymmetry

Sign and magnitude of the components depend strongly on M_A

 $M_A = 0.8, 0.9, 1.0, 1.1, 1.2 \text{ GeV}, F_3^A = 0,$ neutrino energy E = 1 GeV.Normal asymmetry is 0

Axial mass M_A establishing

M_A - triple spin asymmetry

$\bar{ u}_{\mu} p ightarrow \mu^{+} n$

M_A - triple spin asymmetry

$\bar{ u}_{\mu} p ightarrow \mu^{+} n$

Sign and magnitude of the components depend strongly on M_A

 $\begin{array}{l} M_{A} & = \\ 0.8, \, 0.9, \, 1.0, \, 1.1, \, 1.2 \, {\rm GeV}, \\ F_{3}^{A} & = \, 0, \, {\rm neutrino \, energy} \\ E & = 1 \, {\rm GeV}. \\ {\rm Normal \, asymmetry \, is \, 0} \end{array}$

Second class current

Vertex

$$\Gamma^{\mu}_{+}(q) = \gamma_{\mu}F_{1}^{V}(Q^{2}) + i\sigma^{\mu\nu}q_{\nu}\frac{F_{2}^{V}(Q^{2})}{2M}$$

$$- \left(\gamma_{\mu}F_{A}(Q^{2}) + q_{\mu}\frac{F_{P}(Q^{2})}{2M} + i\sigma^{\mu\nu}q_{\nu}\frac{F_{3}^{A}(Q^{2})}{M}\right)\gamma_{5}$$

Conserved vector current CVC $\implies F_3^V = 0$ Dipole parametrization of F_3^A :

$$F_A^3(Q^2) = rac{F_A^3(0)}{\left(1+rac{Q^2}{M_A^2}
ight)^2}$$

A. Fatima, M. Sajjad Athar, S. K. Singh, Phys. Rev. D98, 033005 (2018).

SCC - double spin asymmetry

$u_{\mu} n \text{ and } \bar{\nu}_{\mu} p$

SCC - triple spin asymmetry

 $u_{\mu}n \text{ and } \bar{\nu}_{\mu}p$

Single pion production formalism

SPP formalism

$$\begin{array}{c} \text{CC SPP channels} \\ \nu_{l} + p \to l^{-} + p + \pi^{+}, \quad \bar{\nu}_{l} + n \to l^{+} + n + \pi^{-} \\ \nu_{l} + n \to l^{-} + n + \pi^{+}, \quad \bar{\nu}_{l} + p \to l^{+} + p + \pi^{-} \\ \nu_{l} + n \to l^{-} + p + \pi^{0}, \quad \bar{\nu}_{l} + p \to l^{+} + n + \pi^{0} \end{array}$$

Two mechanisms in the pion production:

 resonant (RES) - the nucleon is excited to the resonance state

$$N \rightarrow N^*$$

which decays

$$N^*
ightarrow \pi N$$

- ν_l neutrino, l charged lepton
- *N* initial nucleon, *N'* -final nucleon
- π pion

nonresonant - no $N \rightarrow N^*$ transition

March 16, 2021

SPP formalism

Models of SPP HNV: Hernandez, Nieves, Valverde, (Phys. Rev. D 76, (2007) 033005) (Non-linear σ model) FN: Fogli, Nardulli, (Nucl.Phys. B 160 (1979)) (Linear σ model)

the first resonance region ($\Delta(1232)$)

 $q^{\mu} = k^{\mu} - k'^{\mu}$ 4-momentum transfer SPP in charged current $N\nu$

$\Delta(1232)$ resonance

described by Rarita-Schwinger field

$$\begin{split} j^{\mu}_{\Delta P} &= i\mathcal{C}^{\Delta P}\cos(\theta_{C})\frac{f^{*}\sqrt{3}}{m_{\pi}}k^{\alpha}\bar{u}(p')\frac{\Lambda^{3/2}_{\alpha\beta}(p_{\Delta})\Gamma^{\beta\mu}(p,q)}{p_{\Delta}^{2}-M_{\Delta}^{2}+iM_{\Delta}\Gamma_{\Delta}(p_{\Delta})}u(p),\\ p_{\Delta} &= p+q\\ j^{\mu}_{+C\Delta P} &= i\mathcal{C}^{C\Delta P}\cos(\theta_{C})\frac{\sqrt{3}f^{*}}{m_{\pi}}\bar{u}(p')\frac{\gamma^{0}\Gamma^{\dagger\alpha\mu}(p',-q)\gamma^{0}\Lambda^{3/2}_{\alpha\nu}(p_{\Delta})}{p_{\Delta}^{2}-M_{\Delta}^{2}+iM_{\Delta}\Gamma_{\Delta}(p_{\Delta})}k^{\nu}_{\pi}u(p),\\ p_{\Delta} &= p'-q \end{split}$$

FN: Nonresonant background

$$j^{\mu}{}_{NP} = i\sqrt{2}g_{NN\pi}C_{NP}\cos(\theta_{C})\bar{u}(\mathbf{p}')\gamma_{5}\frac{\not{p}+\not{q}+M}{(p+q)^{2}-M^{2}+i\epsilon}\left[V_{N}^{\mu}(q^{2})-A_{N}^{\mu}(q^{2})\right]u(\mathbf{p})$$

$$j^{\mu}{}_{CNP} = i\sqrt{2}g_{NN\pi}C_{CNP}\cos(\theta_{C})\bar{u}(\mathbf{p}')\left[V_{N}^{\mu}(q^{2})-A_{N}^{\mu}(q^{2})\right]\frac{\not{p}'-\not{q}+M}{(p+q)^{2}-M^{2}+i\epsilon}\gamma_{5}u(\mathbf{p})$$

$$j^{\mu}{}_{PF} = -i\sqrt{2}g_{NN\pi}C_{PF}\cos(\theta_{C})F_{PF}(q^{2})\frac{(2k_{\pi}-q)^{\mu}}{(k_{\pi}-q)^{2}-m_{\pi}^{2}}\bar{u}(\mathbf{p}')\gamma_{5}u(\mathbf{p})$$

HNV: Nonresonant background

Non-linear sigma model (Phys. Rev. D 76, (2007) 033005)

Different vertices and form factors

March 16, 2021

Similar shape - different components

SPP Cross-section in two different models. Solid line - cross-section in two models of SPP. Red line - interference between RES and NB, dotted - RES, dashed-dotted - NB. E = 0.7 GeV, $Q^2 = 0.1 GeV^2$

Summary

- There are various models of SPP. Different descriptions of RES and non-RES background.
- Structure of amplitude is a sum of RES and non-RES amplitudes with a phase between them

$$|A_{RES} + e^{i\psi}A_{NB}|^2$$

- We assume $e^{i\psi} = 1$
- We need to know relative phase between amplitudes. Experiments have been measured averaged over spin cross-section data. It makes difficult to distinguish RES and NB

Summary

- Developing of procedures of testing models is needed, to reduce model dependency
- Some new observables are needed to study RES and NB, relative phase between amplitudes
- We propose polarization observables

Polarization properties of SPP - the other's results

authors	papers	subject of investigation	
K. Hagiwara et al.	Nucl. Phys. B668, 364 (2003)	polarization properties of the τ -lepton, only RES	
K. S. Kuzmin et al.	Mod. Phys. Lett. A19, 2815 (2004)	polarization properties of the τ -lepton, only RES	

Not discussed yet:

- Polarization properties of nonresonant background of SPP process.
- Polarization properties of the target nucleon in the SPP process.
- Polarization properties of the final nucleon produced in the SPP process

Polarization of the final particles in SPP

Polarization of the final particles

Angular distribution of the particles, in the laboratory frame ζ and ξ - spin components of the lepton and the nucleon respectively.

Polarization of the final particles

Three components of \mathcal{P}^{μ} :

- \mathcal{P}_L (longitudinal),
- \mathcal{P}_{T} (transverse),

 \mathcal{P}_N (normal)

Polarization of lepton

$$\mathcal{P}^{\mu} = \mathcal{P}_L \zeta_L^{\mu} + \mathcal{P}_T \zeta_T^{\mu} + \mathcal{P}_N \zeta_N^{\mu}$$

Polarization of nucleon

$$\mathcal{P}^{\mu} = \mathcal{P}_L \xi^{\mu}_L + \mathcal{P}_T \xi^{\mu}_T + \mathcal{P}_N \xi^{\mu}_N$$

Degree of polarization

$$\mathcal{P} = \sqrt{\mathcal{P}_L^2 + \mathcal{P}_N^2 + \mathcal{P}_T^2}$$

 ζ and ξ - spin components of the lepton and the nucleon respectively.

 \mathcal{P}^{μ} - polarization

 s^{μ} - spin of a particle

$$\mathrm{d}\sigma\sim\frac{1}{2}|\mathcal{M}_{\mathrm{ff}}|^{2}\left(1+\mathcal{P}^{\mu}\mathrm{s}_{\mu}\right)$$

 μ - a light particle - almost polarized. Partially polarized at low scattering angle.

Dependence of the polarization $\mathcal{P}(d^2\sigma/(d\theta dE'))$ on the scattering angle θ , $\omega = 0.2 GeV$, E = 1 GeV

P_N is given by the RES-NB interference

Dependence		of		
the	polarization			
$\mathcal{P}(d^2 d$	$\sigma/(\mathrm{d}\theta\mathrm{dE'})$) on		
the	scattering	angle		
θ , ω	= 0	.2GeV,		
E = 1 GeV				

P_N is given by the RES-NB interference

Non-diagonal elements - interference of diagrams

March 16, 2021

Polarization of final nucleon - T2K flux

 ν channels

Red line - FN model Black line - HNV model Dotted line - only RES

Dependence of the polarization $\mathcal{P}(d^3\sigma/(d\Omega d\phi_{\pi} dE'))$ on the angle ϕ_{π} ; $\omega = 0.2 GeV$, $\theta = 5^{\circ}$, T2K flux

$\bar{\nu}$ channels

Red line - FN model Black line - HNV model Dotted line - only RES

Dependence of the polarization $\mathcal{P}(d^3\sigma/(d\Omega d\phi_{\pi} dE'))$ on the angle ϕ_{π} ; $\omega = 0.2 GeV$, E = 1 GeV, $\theta = 5^{\circ}$

Interference RES-NB in the P_N - distortion of sinusoidal character: $\mathcal{P}_N = a_1 \sin(\phi_\pi)$ (main part) + $a_2 \sin(2\phi_\pi) + a_3 \sin^2(\phi_\pi)$

 a_3 - is given by RES-NB interference. Non-zero after integration over ϕ_{π}

Dependence of the polarization $\mathcal{P}(d^3\sigma/(d\Omega d\phi_{\pi} dE'))$ on the angle ϕ_{π} ; $\omega = 0.2 GeV$, $\theta = 5^{\circ}$, F = 1 GeV

Polarized target asymmetry in SPP

Polarized target asymmetry

Angular distribution of the particles, in the laboratory frame χ_L , $\chi_T(\phi)$ - spin components of the nucleon.

 χ_L - spin along the ν flux $\chi_T(\phi)$ - spin perpendicularly to the ν flux, ϕ - angle between spin and normal to scattering plane

Polarized target asymmetry

Polarized target asymmetry

 $\chi_L, \chi_T(\phi)$ - spin components of the nucleon. \mathcal{A}^{μ} - asymmetry

$$\mathcal{A}^{\mu} = \mathcal{A}_{T}(\phi)\chi^{\mu}_{T}(\phi) + \mathcal{A}_{L}\chi^{\mu}_{L}$$

 s^μ - spin of a particle

$$\mathrm{d}\sigma\sim\frac{1}{2}|\mathcal{M}_{\mathit{f}\!i}|^2\left(1+\mathcal{A}^{\mu}\mathrm{s}_{\mu}\right)$$

Directions of target polarization

Target polarized longitudinally to the beam

$$\mathcal{A}_L = \frac{\mathrm{d}\sigma(\chi_L) - \mathrm{d}\sigma(-\chi_L)}{\mathrm{d}\sigma(\chi_L) + \mathrm{d}\sigma(-\chi_L)}$$

Target polarized perpendicularly to the beam

$$\mathcal{A}_{\mathcal{T}} = \frac{\mathrm{d}\sigma(\chi_{\mathcal{T}}) - \mathrm{d}\sigma(-\chi_{\mathcal{T}})}{\mathrm{d}\sigma(\chi_{\mathcal{T}}) + \mathrm{d}\sigma(-\chi_{\mathcal{T}})}$$

Longitudinally polarized target

Figure: Dependence of $A_L(\sigma)$ on the energy of neutrino

Longitudinally polarized target

For some channels A_L is quite model dependent and *NB* contribution modifies significantly.

Figure: Dependence of $A_L(\sigma)$ on the energy of neutrino

Perpendicularly polarized target

Contributions from different diagrams to $A_T(d\sigma/d\phi)$, $\phi = 0^\circ$, only RES-NB interference contributes

Diagonal elements - square of amplitudes of diagrams Non-diagonal elements - interference of diagrams

March 16, 2021

Perpendicularly polarized target

Contributions from different diagrams to $A_T(d\sigma/d\phi)$, $\phi = 90^\circ$, contribution from all diagrams

Diagonal elements - square of amplitudes of diagrams Non-diagonal elements - interference of diagrams

March 16, 2021

Perpendicularly polarized target

$\blacksquare \mathcal{A}_T$ has a form

$$\mathcal{A}_{T}(\phi) = a_{1} \cos(\phi) + a_{2} \sin(\phi)$$

■ $A_T(\phi)$ is dominated by the sinusoidal part a_2

• for $\phi = 0$ only a_1 contributes - RES interference with NB

Conclusions

QE

- Sign and magnitude of the polarization observables depend strongly on M_A
- They are promising observables for investigation of SCC in the neutrino scattering

SPP

- Polarization observables are sensitive to details of the SPP models
- The normal polarization is dominated by NB-RES interference, relative phase information
- * calculated in the Wroclaw Centre for Networking and Supercomputing, Grant No. 268 ** using symbolic programming language FORM

Thank You for Your attention