

Short Time Approximation

New Directions in Neutrino-Nucleus Scattering - NuSTEC 16 March 2021

Saori Pastore Washington University in St Louis

https://physics.wustl.edu/quantum-monte-carlo-group

Quantum Monte Carlo Group @ WashU Lorenzo Andreoli (PD) Jason Bub (GS) Garrett King (GS) Maria Piarulli and Saori Pastore

Computational Resources awarded by the DOE ALCC and INCITE programs

Microscopic (or ab initio) Description of Nuclei

Goal:

Comprehensive theory that describes quantitatively and predictably nuclear structure and reactions

Requirements:

- Accurate understanding of the interactions/correlations between nucleons in paris, triplets, ... (two- and three-nucleon forces)
- Accurate understanding of the electroweak interactions of leptons with nucleons, correlated nucleon-pairs, ... (one- and two-body electroweak currents)
- Computational methods to solve the many-body nuclear problem of strongly interacting particles

Strategy

Validate the Nuclear Model against available data for strong and electroweak observables

- Energy Spectra, Electromagnetic Form Factors, Electromagnetic Moments, ...
- Electromagnetic and Beta decay rates, ...
- Muon Capture Rates, ...
- Electron-Nucleus Scattering Cross Sections, ...

Use attained information to make (accurate) predictions for BSM searches and precision tests

- EDMs, Hadronic PV, ...
- BSM searches with beta decay, ...
- Neutrinoless double beta decay, ...
- Neutrino-Nucleus Scattering Cross Sections, ...
- ...

Many-body Nuclear Interactions

Many-body Nuclear Hamiltonian

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

 v_{ij} and V_{ijk} are two- and three-nucleon operators based on experimental data fitting; fitted parameters subsume underlying QCD dynamics

Contact term: short-range Two-pion range: intermediate-range $r\propto (2\,m_\pi)^{-1}$ One-pion range: long-range $r\propto m_\pi^{-1}$

In Quantum Monte Carlo methods we use:

AV18+UIX; AV18+IL7 Wiringa, Schiavilla, Pieper *et al.* chiral $\pi N N2LO+N2LO$ Gerzelis, Tews, Lynn *et al.* chiral $\pi N\Delta N3LO+N2LO$ Piarulli *et al.* Norfolk Models

Quantum Monte Carlo Methods

Minimize the expectation value of the nuclear Hamiltonian: $H = T + v_{ii} + V_{iik}$

$$E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \ge E_0$$

using the trial wave function:

$$|\Psi_V\rangle = \left[\mathcal{S}\prod_{i< j} (1 + U_{ij} + \sum_{k\neq i,j} U_{ijk})\right] \left[\prod_{i< j} f_c(r_{ij})\right] |\Phi_A(JMTT_3)\rangle$$

Further improve the trial wave function by eliminating spurious contaminations via a Green's Function Monte Carlo (GFMC) propagation in imaginary time

$$\Psi(\tau) = \exp[-(H - E_0)\tau]\Psi_V = \sum_n \exp[-(E_n - E_0)\tau]a_n\psi_n$$
$$\Psi(\tau \to \infty) = a_0^n\psi_0$$

AV18+UIX; AV18+IL7 Wiringa, Schiavilla, Pieper *et al.* chiral $\pi N N2LO+N2LO$ Gerzelis, Tews, Lynn *et al.* chiral $\pi N\Delta N3LO+N2LO$ Piarulli *et al.* Norfolk Models

Energies and Shapes of Nuclei

Many-body Nuclear Electroweak Currents

• One-body currents: non-relativistic reduction of covariant nucleons' currents

- Two-body currents are a manifestation of two-nucleon correlations
- Electromagnetic two-body currents are required to satisfy current conservation

$$\mathbf{q} \cdot \mathbf{j} = [H, \rho] = [t_i + v_{ij} + V_{ijk}, \rho]$$

Nuclear Charge Operator

$$\rho = \sum_{i=1}^{A} \rho_i + \sum_{i < j} \rho_{ij} + \dots$$

Nuclear (Vector) Current Operator

Magnetic Moment: Single Particle Picture

Many-body Currents: Available Models

• Meson Exchange Currents (MEC)

Constrain the MEC current operators by imposing that the current conservation relation is satisfied with the given two-body potential

• Chiral Effective Field Theory Currents

Are constructed consistently with the two-body chiral potential; Unknown parameters, or Low Energy Constants (LECs), need to be determined by either fits to experimental data or by QCD calculations, as well as nucleonic form factors

$$LO : j^{(-2)} \sim eQ^{-2}$$

$$NLO : j^{(-1)} \sim eQ^{-1}$$

$$N^{2}LO : j^{(-0)} \sim eQ^{0}$$

$$M^{3}LO : j^{(1)} \sim eQ$$

$$unknown LEC's$$

. .

Electromagnetic Current Operator

SP *et al.* PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001, PRC87(2013)014006 Park *et al.* NPA596(1996)515, Phillips (2005) Kölling *et al.* PRC80(2009)045502 & PRC84(2011)054008

Magnetic Moments of Light Nuclei

Electron-Nucleus Scattering

Nuclear properties are strongly affected by two-body correlations and currents in a wide range of energy and momentum transfer

Subedi et al. Science320(2008)1475

pp-pairs; np-pairs

Neutrino-Nucleus Interactions

High Energy (on Nuclear Physics Scale): Neutrino-Nucleus Cross Section

Formaggio and Zeller

Lepton-Nucleus scattering: Inclusive Processes

Electromagnetic Nuclear Response Functions

$$R_{\alpha}(q,\omega) = \sum_{f} \delta\left(\omega + E_0 - E_f\right) |\langle f|O_{\alpha}(\mathbf{q})|0\rangle|^2$$

Longitudinal response induced by the charge operator $O_L = \rho$ Transverse response induced by the current operator $O_T = j$ 5 Responses in neutrino-nucleus scattering

$$\frac{d^2 \sigma}{d \,\omega d \,\Omega} = \sigma_M \left[v_L \, R_L(\mathbf{q}, \omega) + v_T \, R_T(\mathbf{q}, \omega) \right]$$

For a recent review see Rocco Front.inPhys.8 (2020)116

Lepton-Nucleus scattering: Data

5

Transverse Sum Rule

 $S_T(q) \propto \langle 0 | \mathbf{j}^{\dagger} \mathbf{j} | 0 \rangle \propto \langle 0 | \mathbf{j}_{1b}^{\dagger} \mathbf{j}_{1b} | 0 \rangle + \langle 0 | \mathbf{j}_{1b}^{\dagger} \mathbf{j}_{2b} | 0 \rangle + \dots$

Observed transverse enhancement explained by the combined effect of two-body correlations and currents in the interference term

$$\langle \mathbf{j}_{1b}^{\dagger} \ \mathbf{j}_{1b} \rangle > 0$$

Leading one-body term

$$\langle \mathbf{j}_{1b}^{\dagger} \; \mathbf{j}_{2b} \; v_{\pi} \rangle \propto \langle v_{\pi}^2 \rangle > 0$$

Interference term

Transverse/Longitudinal Sum Rule Carlson *et al.* PRC65(2002)024002

Beyond Inclusive: Short-Time-Approximation

Short-Time-Approximation Goals:

- Describe electroweak scattering from A
 > 12 without losing two-body physics
- Account for exclusive processes
- Incorporate relativistic effects

Subedi et al. Science320(2008)1475

Stanford Lab article

Short-Time-Approximation

Short-Time-Approximation:

- Based on Factorization
- Ratain two-body physics
- Correctly accounts for interference

$$R(q,\boldsymbol{\omega}) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{i(\boldsymbol{\omega}+E_0)t} \langle 0|O^{\dagger} e^{-iHt} O|0\rangle$$

$$O_i^{\dagger} e^{-iHt} O_i + O_i^{\dagger} e^{-iHt} O_j + O_i^{\dagger} e^{-iHt} O_{ij} + O_{ij}^{\dagger} e^{-iHt} O_{ij}$$

$$H \sim \sum_i t_i + \sum_{i < j} v_{ij}$$

Short-Time-Approximation

Short-Time-Approximation:

- Response functions are given by the scattering from pairs of fully interacting nucleons that propagate into a correlated pair of nucleons
- Allows to retain both two-body correlations and currents at the vertex
- Provides "more" exclusive information in terms of nucleon-pair kinematics via the Response Densities

Response Functions

$$R_{\alpha}(q,\omega) = \sum_{f} \delta\left(\omega + E_0 - E_f\right) \left|\langle f | O_{\alpha}(\mathbf{q}) | 0 \rangle\right|^2$$

Response Densities

$$R(q,\omega) \sim \int \delta \left(\omega + E_0 - E_f\right) dP' dp' \mathcal{D}(p',P';q)$$

P' and *p*' are the CM and relative momenta of the struck nucleon pair

Transverse Response Density: *e*-⁴He scattering

Transverse Density q = 500 MeV/c

SP et al. PRC101(2020)044612

Transverse Response Density: two-body physics

q=500

Correlated pairs vs uncorrelated pairs

Scattering from uncorrelated vs correlated nucleon pairs

e-⁴He scattering in the back-to-back kinematic

SP et al. PRC101(2020)044612

Back to back scattering and particle identity

tot

pp nn pp/all % pp/all % from momentum distributions nn/all %

Helium-4 comparison with the data

SP et al. PRC101(2020)044612

Implementations in GENIE

- STA responses used to build the cross sections
- Responses calculated on a finer grid of momentum transfer using scaling functions
- A finer grid in momentum transfer is required to achieve smoother interpolations

 $\frac{d^2 \sigma}{d \,\omega d \,\Omega} = \sigma_M \, \left[v_L \, R_L(\mathbf{q}, \omega) + v_T \, R_T(\mathbf{q}, \omega) \right]$

Barrow, Gardiner, Betancourt et al. PRD (2021)

GENIE validation using e-scattering

Z = 2, A = 4, Beam Energy = 0.64 GeV, Angle = 60° ± 0.25°

Barrow, Gardiner et al. to appear on PRD (2021)

Ongoing work

- Implementation of moment-morphin interpolation techniques
- Implementations of response
 Densities in GENIE
- ¹²C response densities with Lorenzo Andreoli

GFMC SF STA: Benchmark & error estimate

Rocco, Lovato, SP et al. ongoing

Summary and Outlook

Ab initio calculations of light nuclei yield a picture of nuclear structure and dynamics where many-body effects play an essential role to explain available data.

Transverse Density $q=500~{\rm MeV/c}$

Close collaborations between NP, LQCD, Pheno, Hep, Comp, Expt, ... are required to progress

It's a very exciting time!

Collaborators

WashU: **Andreoli Bub King** Piarulli LANL: **Baroni** Carlson Cirigliano Gandolfi Hayes Mereghetti JLab+ODU: Schiavilla ANL: Lovato Rocco Wiringa UCSD/UW: Dekens Pisa U/INFN: Kievsky Marcucci Viviani Salento U: Girlanda Huzhou U: Dong Wang

Theory Alliance facility for rare isotope beams

