µBooNP Pushing the Limits for Improved Cross Section Results with LArTPC Technology

New Directions in Neutrino-Nucleus Scattering NuSTEC workshop 3/15/21

Adi Ashkenazi on behalf of the MicroBooNE collaboration adi@fnal.gov

Introduction

Already now, MicroBooNE offers a series of cross section measurements

Available cross section on Argon is vital for SBN and DUNE A LArTPC detector has low detection threshold & 4π acceptance

Better understanding of LArTPC, energy reconstruction and improvements of models.

SBN - Short Base Line Neutrino Program

SBN - Short Base Line Neutrino Program

LAr TPC - MicroBooNE

For more see <u>here</u>

LAr TPC - MicroBooNE

Near surface LArTPC detector Active mass: 85 tons Fiducial Volume: 2.5 x 2.2 x 10 m Triggered by 32 PMTs Anode: 3 wire planes Stable detector operation since 2015 1.52E21 POT collected Analysis of the initial subset of the data shown today Cosmic Ray Tagger (CRT) help rejecting background since 2018

LAr TPC - MicroBooNE

- Low tracking threshold
- Charge collection supply calorimetry
- High statistics
- Latest results with
 improved detector
 understanding and
 reduced systematics
 uncertainties

Improved signal processing	Cosmic Rejection
Flash Matching	Data driven based detector uncertainties

Improved signal processing

- Accounting for signals from different wires in all 3 planes
- Better calorimetry in all phase space
- Better efficiency
- Reduced detector systematics

Flash Matching

Data driven based detector uncertainties

Improved signal processing

Cosmic Rejection

Flash Matching

- New methods for TPC/PMT matching
- Predicting light distribution of a cluster and comparing to light measurement.

Improved signal processing

Cosmic Rejection

- Using off beam data as background to simulation
- CRT since 2018 helps exclude crossing penetrating tracks

Flash Matching

Improved signal processing

Cosmic Rejection

Flash Matching

Data driven detector uncertainties

Parameterising the hits charge and width with respect to location and orientation

Cross section results

MicroBooNE is shifting gears to precision measurements.

MicroBooNE inclusive results stands in good agreement with many event generator's prediction. Specifically, GENIE v3.0.6

Exclusive results show differences at specific regions of phase-space

<u>ve + ve CC inclusive with Numi</u>

One of MicroBooNE's greatest ability: Distinguish between photons and electrons

dE/dx at the beginning of an electron induced shower is of MIP ~2 MeV/c

dE/dx at the beginning of a photon induced shower, producing e^+e^- pair is twice MIP ~ 4 MeV/c

 π^0 background will result with a distance between vertex and beginning of shower

$v_e + \overline{v}_e CC$ inclusive with Numi

One of MicroBooNE's greatest achievements: Distinguish between photons and electrons

$v_e + \overline{v}_e CC$ inclusive with Numi

While searching for v_e excess in BNB, measuring the flux averaged cross section in NuMI

First demonstration of electron neutrino reconstruction in a surface LArTPC in the presence of cosmic ray backgrounds. Largest sample to data > 200 events

Final selection: purity of 39% and efficiency 9% Good agreement with models

Stay tuned for the next round of this analysis: differential cross section, with reduced cosmic background and uncertainties

arXiv:2101.04228v1 [hep-ex]

v_µCC inclusive with BNB

First ever double differential cross section measurement on Argon Overall good agreement with prediction. GENIE v3 best describe data Disagreement observed in forward scattering angle at high momentum

Phys.Rev.Lett. 123,131801 (2019)

v_µCC inclusive - Looking to the Future

Improved detector understanding and cosmic rejection, improves the results

The purity: From 50% to 71.9%

Detector uncertainties: From 16.2% to 3.3%

μ

Protons in LArTPC

LArTPC supply the lowest threshold particle detection MicroBooNE's proton detection threshold 300 MeV/c

Identified using dE/dx and the Bragg peak at end of track

For more see: JINST 15, P03022 (2020)

<u>CC0 π NP N \geq 1</u>

Event selection: 1μ (**P** μ > **100 MeV/c**) 1p (**300 MeV/C** < **P**p < **1200 MeV/c**), 0π

71% purity, 29% efficiency

Overall agreement in proton kinematic

Notice low bin allowed by detection threshold, also most sensitive to differences between models

CC0 π **NP N \ge 1**

This semi-exclusive measurement shows interesting disagreement in muon kinematics at very forward scattering angles

CC0π1P or CCQE-like events

Vertex of 2 semi-contained tracks (start within the fiducial volume) one muon ($P\mu > 100 \text{ MeV/c}$) one proton (Pp > 300 MeV/c) no $\pi 0$, no charged $\pi (\geq 70 \text{ MeV/c})$

Additional cuts on:

- To reduce cosmic contamination
 - $|\Delta \theta_{\mu p} 90^{\circ}| < 55^{\circ}$
- To enhance QE contribution
 - $|\Delta \phi_{\mu p} 180^{\circ}| < 55^{\circ}$
 - $p_T = |\vec{p}_{T,\mu} + \vec{p}_{T,p}| < 350 \text{ MeV/c}$

~84% CC1p0 π (~81% CCQE) purity, 20% efficiency

CC0π1P - CCQE-like events

Overall agreement except for forward muon scattering angle

<u>CC0π1P - CCQE-like events</u>

Phys Rev Lett. 125, 201803 (2020)

Going more exclusive with protons

CC inclusive

CCNP

CC1P

Stay tuned to new results with better detector understanding and differential cross section from off axis NuMI

NC1P

Challenging signal: 1 proton track (1.2 < L < 200 cm) no additional tracks / showers Lowest Q² NC1P analysis to date (0.1 GeV^2)

Using BDT based on 13 track variables (exp. dE/dx, length, direction) Efficiency 29.8% purity 42.1%

Using:

- off beam data background
- Data driven based detector uncertainties
- Comparing to MicroBooNE tune

NC1P

Challenging signal: 1 proton track (1.2 < L < 200 cm) no additional tracks / showers

Using BDT based on 13 track variables (exp. dE/dx, length, direction) Efficiency 29.8% purity 42.1%

Using:

- off beam data background
- Data driven based detector uncertainties
- Comparing to MicroBooNE tune

New Directions

This is only the beginning!

MicroBooNE holds 10 times more data than analysed

MicroBooNE is also working on a specific tune GENIE v3.06 based on T2K data. Initial studies show for the first time a good agreement between data on Argon and a tune based on Carbon!

Given MicroBooNE's achievements in detector understanding and improvements:

Improved signal processing Cosmic Rejection

Flash Matching Data driven detector uncertainties

We excited for the coming future

Improved $v_{\mu}CC$ inclusive - see talk by London Cooper-Troendle

Next step with protons:

Double differential cross sections with 1p Extracting differential cross section wrt standard transverse variables Studying 2p

Given recalibration of showers, and improved π^0 resolution: π , μ kinematics, and studies for CC/NC ratio

First analyses with charged pions π , μ kinematic, proton multiplicity Coherent π^+

New Directions with Numi

Improved v_eCC inclusive see talk by Krishan Mistry

 $\nu_e CC0\pi Np$

 ν_{μ} kaon analysis (for better statistics)

and more...

Summary

Presenting a series of vAr cross section results from MicroBooNE

Nice data simulation agreement in inclusive results

Hints for disagreement in:

- forward going muons
- low momentum protons

Looking forward to explore new directions

Thank you for your attention

 ν_{μ} CC inclusive

double differential Phys. Rev. Lett. 123, 131801

single differential MICROBOONE-NOTE-1069-PUB

 v_{μ} exclusive particle multiplicity <u>Eur Physical Journal C volume 79</u> CCQE-like 1µ1p Phys. Rev. Lett. 125, 201803, Eur. Phys. J. C 79 CCNp 1µNp Phys. Rev. D 102, 112013 CCπ⁰ pion production Phys. Rev. D 99, 091102 kaon production <u>MICROBOONE-NOTE-1071-PUB</u> NC <u>MICROBOONE-NOTE-1067-PUB</u>

v_e inclusive <u>arXiv:2101.04228 [hep-ex]</u>

MicroBooNE First Results

One Shower

Selection

500

0

1000

1500

Neutrino energy (MeV)

2000

2500

3000

Charged particle Multiplicity First detailed measurement testing GENIE models on Argon nuclei

arXiv:1805.06887 (submitted to PRD)

CC inclusive

good cosmic rejection

model dependencies are negligible MICROBOONE-NOTE-1045-PUB

CC π^0 Low statistics, lower cosmic background Model dependent MicroBooNE-Note-1032-PUB

Protons analyses selection

CCQE-like analysis: An event is CC1p0pi "signal" if	CCNp analysis: An event is CC0pi "signal" if	
True charged-current numu interaction	True charged-current numu interaction	
Exactly one muon, that passes the following requirments	Exactly one muon, that passes the following requirements	
$p_{\mu} > 0.1 \text{ GeV/c}$		
р _µ < 1.5 GeV/c	_	
-0.65 < cosθ _μ < 0.95	_	
Exactly one proton, that passes the following requirements	At least one proton, that passes the following requirements	
p _p > 0.3 GeV/c		
p _p < 1.0 GeV/c	p _p < 1.2 GeV/c	
cosθ _p > 0.15	_	
Non-collinearity: Δθ _{μp} - 90° < 55°	_	
Coplanarity: Δφ _{μρ} - 180° < 35°	-	
Small missing transverse momentum: $p_T = p_T^{\mu}+p_T^{p} < 350$ MeV/c	-	
Any number of protons with $p_p < 300 \text{ MeV/c}$	Any number of protons	
No charged pions with momentum > 70 MeV/c	No charged pions with any momentum	
Any number of neutrons		
Any number of neutral pions	No neutral pions	
Any number of electrons or photons		

NC models

Model	Parameter	Description
Nuclear model	LFG	Local Fermi Gas model
Final State Interaction Model	hA2018	Hadron-nucleus interaction model
NC Elastic model	$M_A=0.96~{ m GeV}$	Axial mass in Ahrens model
	$\eta=0.12$	Strange quark contribution in Ahrens model
NC Resonance model	$M_A = 1.120 { m ~GeV}$	Axial mass of Berger-Sehgal model
	$M_V=0.840~{ m GeV}$	Vector mass of Berger-Sehgal model
NC Meson Exchange Current model	-	Empirical Dytman model

Improved systematics CCv_µ Inclusive

