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Background

Neutrino detection for nuclear monitoring

Technological goal: compact remote sensor of reactor neutrinos

Nuclear monitoring concept for conventional 
neutrino detectors

• Nuclear reactors produce low-energy neutrinos 
(<100 eV) 

• Can be detected by conventional techniques 
(inverse Beta decay), or potentially by more 
novel techniques (CEvNS) 

• Can determine reactor ON/OFF, power levels, 
and fuel composition1

• Tradeoffs between detector size, standoff 
distance, and event rate

1R. Carr et al., Science & Global Security (2019)



Coherent Neutrino Scattering

• A new process that achieves a huge increase in the 
probability for neutrinos to interact with matter

– Significant reduction (10-100x) in required     
target mass

– Technique recently demonstrated with high 
energy neutrinos from spallation source

Coherent elastic neutrino-nucleus scattering (CEvNS) The Super-
Kamiokande detector 
in Japan, which 
helped establish 
neutrino has a mass 
(a violation of  the 
Standard Model).

Target: 50 kilotons of  
water

16 kg NaI detector from COHERENT collaboration



Superconducting Bolometers For Neutrino Detection: 
The Ricochet Collaboration

Overall goal: Detect neutrinos from a nuclear reactor using coherent scattering



MIT and Ricochet 
Collaboration

High-sensitivity bolometers

• Low temperature 
transition edge sensors

• Superconducting target 
material

High-sensitivity readout

Lincoln Lab

• Use high-Q aluminum process 
to reduce noise

• Optimizing design parameters 
for high sensitivity
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• Neutrino detection is a proven capability for monitoring nuclear reactors.

• Any deployable monitoring system will face tradeoffs between detector size, standoff 
distance, and detection rate.

• The CEvNS process may enable a significant reduction in detector size.

• The Ricochet Collaboration is working to demonstrate a first detection of  reactor neutrinos 
via CEvNS.

Summary
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• Technical challenge:  Recoil energy from a 
nuclear reactor neutrino is 100x smaller than 
that from a spallation neutron source
– Low energy thresholds are required (< 100 eV)

Technical Approach

• Proposed solution: Use an array of 
superconducting bolometers with highly 
sensitive amplifiers
– Small target size lowers the heat capacity;

increases sensitivity to small ∆T
– An array of these detectors increases the

target mass to interact with neutrinos

100 mK stage

10 mK stage

Detector array

Long-term goal: Detect neutrinos from a nuclear reactor using coherent scattering

Lincoln Lab effort: Develop arrays of highly-sensitive superconducting amplifiers for detecting 
reactor neutrinos



• Long-term goal: detect <100 eV neutrinos
(with ~1 kHz detection bandwidth)

• Current noise requirement: <3 pA/ 𝐇𝐇𝐇𝐇
(using an array of 25 g Zn targets and 15 mK TESs)

Readout Requirements

~ 2nA

Simulation courtesy of Doug Pinckney

~ 0.1µK

TES

Resonator

Mates et al, Appl. Phys. Lett. (2017)

Readout Schematic

Simulated Results for 100 eV Neutrino

• Enables high-density arrays with limited control lines

• 128 TES readout demonstrated on the NIST 
SLEDGEHAMMER gamma-ray spectrometer

• State-of-the-art current noise: 19 pA/ 𝐇𝐇𝐇𝐇

Need to improve readout arrays to achieve required noise performance

Microwave Multiplexed Readout



• New amplifier designs

– Exploring design space to optimize for sensitivity

– Using high-Q Aluminum fabrication process

– Design variations targeting current noise as low as 1 pA/ 𝐇𝐇𝐇𝐇

Amplifier Design Optimization
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Microwave Multiplexed Readout

Image of 6-channel prototype
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