

Manfred Lindner

On behalf of the CONUS Collaboration

NuTools Mini-Workshop for the Applied Antineutrino Technology Community July 22 and 24, 2020

Scientific Goals

• Observe coherent scattering of low energy reactor neutrinos:

- CEvS: Predicted 1974 by D.Z. Freedman
- 1st observed 2017 by COHERENT with v's from π decay at rest
- observation at lower energy $\leftarrow \rightarrow$ complimentary
- Interesting physics potential ← → BSM physics:
 - cross sections $\leftarrow \rightarrow$ nuclear astrophysics (SN, ...)
 - neutrino magnetic moment
 - precise low energy determination of $sin^2\Theta_W$
 - NSI's
 - nuclear structure in v-light
 - dark matter...

- ...

 \rightarrow low $E_{\nu} \rightarrow$ low x-sections \rightarrow high flux \rightarrow close to a strong reactor

$$\frac{d\sigma(E_{\nu},T)}{dT} = \frac{G_f^2}{4\pi} Q_w^2 M \left(1 - \frac{MT}{2E_{\nu}^2}\right) F(Q^2) \sim \mathbb{N}^2$$

→ MeV-ish v's with low recoil energies → very low threshold Advantage: $F(Q^2) \simeq 1$ → well suited to extract info on new physics

The CONUS Experiment

C V U S

1) very low detection threshold ←→ R&D

- 2) highest neutrino flux → close to a power reactor
- 3) best background suppression → "virtual depth"

COherent NeUtrino Scattering experiment

A. Bonhomme, H. Bonnet, C. Buck, T. Hugle, J. Hakenmüller, G. Heusser, M. Lindner, E. van Meeren, W. Maneschg, T. Rink, H. Strecker - Max Planck Institut für Kernphysik (MPIK), Heidelberg

K. Fülber, R. Wink - Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf

Combine:

The Brokdorf Reactor Site

Brokdorf (Germany) nuclear power plant:

- thermal power 3.9 GW_{th}
- detector @ d=17m
 → v flux: 2.4 x 10¹³/cm²/s very high duty cycle

• very detailed reactor information & excellent support

→ very intense integral neutrino flux E_{ν} up to ~ 8 MeV → fully coherent

- overburden 10-45 m.w.e
- access during reactor operation
- measurements of n background
- **ON/OFF periods**

➔ background only measurement

Detectors: CONUS 1-4

- p-type point contact HPGe
- 4x 1kg active mass 3.85kg
- spec. for pulser res. (FWHM) ≤ 85eV
 → noise threshold < 300eV
- electrical PT-cryocoolers
- ultra low background components
- close R&D collaboration with Canberra

Detector	Pulser FWHM _P [eV _{ee}]
CONUS-1	69±1
CONUS-2	77±1
CONUS-3	64±1
CONUS-4	68±1

Long term stability

Under lab. Conditions: stan. dev. of peak position: +-15eV (+-0.02%) (within 45 days)

``Virtual Depth'': The GIOVE Shield

GIOVE: G.Heusser et al., Eur. Phys. J. C(2015)75:531

Developed at MPIK

- main purpose: material screening @ shallow depth (15 mwe)

PE 10% B

PE 3% E

PE 3% B

- coaxial HPGe detector ($m_{act} = 1.8 \text{ kg}$)
- **optimized radio-pure passive shielding:** Pb, B-doped PE, μ-veto, OFHC Cu, ...
- active veto optimized to reduce μ's and μ-induced signals (neutrons, ...)
 - plastic scintillators with PMTs
 - 99% muon veto efficiency (dead time $\sim 2\%$)

- achieved sensitivity:

²²⁶Ra: 70µBq/kg,²²⁸Ra: 110µBq/kg, ²²⁸Th 50µBq/kg

``virtual depth'`
→ UG projects close to surface

The CONUS Detector

The setup:

- 4 Germanium detectors
- PT cryocooling
- "virtual depth" shielding
 - → all ultra low background →
- electronics & DAQ
- @ Brokdorf reactor

Combination of three essential improvements:

- low background environment $\leftarrow \rightarrow$ excellent shielding
- detectors with very low thresholds & PT cryocooling
- a site with an extremely high neutrino flux

Project start summer 2016 \rightarrow data taking spring 2018

Test Assembly and Installation *@* **Reactor**

- assembly at MPIK UG lab → characterization
- \rightarrow commissioning

installation @ Brokdorf
→ full assembly
→ commissioning

Radon Mitigation *@* **Reactor Site**

radon at reactor site: closed room, thick concrete walls \rightarrow 100-300 Bq/m³ half-life of ²²²Rn: 3.8d \rightarrow counter measure @reactor site: hermetical sealing + flush with aged breating air bottles ~1 l/min

CONUS1: integral bg in [20,440] keV 1.2meas.value / meas.max 0.80.6 0.40.2 rel. Rn activity in room integ, count rate in Ge 12 14 16 18 2022 10 6 time [d] flushing with no flushing breathing air bottles

Summary

- Smooth detector operation: reactor ON-OFF (thermal power)
 - ON periods: reactor is operated at 95% of maximum 3.9 GW thermal power
 - **OFF periods:** challenging due to environmental stability and less exposure
 - Power variations $\leftarrow \rightarrow$ wind
 - "virtual depth" works: bg rates of 10 (1) cts/d/kg below 1 keV (above 2 keV)
 - \rightarrow lower than what has been achieved by several other DM experiment
 - Campaigns to understand remaining backgrounds:

detailed study of neutrons with PTB: Eur. Phys. J. C (2019) 79: 699

→ reactor correlated neutron background inside shield neligible detailed background modelling \leftarrow → fully consistent stability studies

other ...

N - Reactor neutrino spectrum, ...