

J. Coleman, R. Collins, G. Holt, C. Metelko, R. Mills, Y. Schnellbach

The VIDARR detector

- Active scintillator bars read out with WLS + MPPCs
- Using self-contained mobile laboratory (20 ft. ISO container)
- Transport using standard HIAB truck
- Field tested at Wylfa
- Reactor Modelling via
 National Nuclear Lab (NNL) UK

ICURe Outcomes

- What is ICURe?
- Short programme to evaluate the commercial potential of research:
 - UK-based
 - 3 months length
 - Provided training
 - Travel funds

- CCRe
- Aim: contact 100 industry contacts to survey idea

3

Key Learnings

- Nuclear industry is conservative, meaning:
 - Slow uptake of new technologies for R&D's sake
 - Requires mature, well-developed and tested technology: COTS solutions vastly preferred
 - Utility companies: no **fast growth**, most economic projections are **long term** (low risk tolerance)
- Potential uses of anti-neutrino technology:
 - **Reactor optimisation**, via reduced uncertainties
 - Criticality monitoring for nuclear facilities
 - Safeguards, esp. for Gen V/bulk fuel (e.g. pellets, molten salt) and SMR technologies
 - Waste Assay, at the moment interest is in feasibility
- All applications require a *solution* first: nobody wants to fund R&D highlighting a *problem with their business*
- Monitoring & safeguards will require *regulatory pressure* to adapt technologies beyond currently available (no economic incentives otherwise)

Requirements for deployment

From experience of talk to 'UK-support programme to IAEA' and current industry discussions

- Safeguards and verification of Reactor operations remains attractive when discussing with operators
- Applications research tend to want an infield tested device before doing R&D to test capabilities
- Roadmap provided in
 - IAEA report 2008*
- Provides a route to safety cases and access
 - allowed access to Wylfa Magnox
- focus on making it a "drop-in" device that does not require a (particle) physicist to operate it day-to-day

)	Requirement
	Inert construction
	Non-liquid
	Easy operation
	Cheap
	Portable
	Robust
,	Aboveground operation
	Easy deployment

*"Final Report: Focused Workshop on Antineutrino Detection for Safeguards Applications", IAEA (2008)

