The logarithmic gauged linear sigma model: Applications

Felix Janda

IAS/University of Notre Dame

August 21, 2020

joint works (partially in progress) with Q. Chen, S. Guo, Y. Ruan and A. Sauvaget arXiv: 1906.04345, 1812.11908, 1805.02304, 1709.07392

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example applications

1. Structure of Gromov–Witten theory of $X_5 \subset \mathbb{P}^4$ (finite generation, HAEs, orbifold regularity)

Chang-Li-Li-Liv-Guo

- 3. LG/CY correspondence for $X_5 \subset \mathbb{P}^4$ 4. Conjectures of Oberdieck–Pixton for Gromov–Witten theory of Weierstrass elliptic fibrations L/X, M_{avg}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Using log GLSM in a nutshell

- 1. Set-up GLSM target $(\mathbb{P}^{\circ}, W, \mathbb{C}^{*}_{\omega})$ for problem
- 2. Set-up log GLSM $(\mathbb{P}, W, \mathbb{C}^*_{\omega})$ target that recovers $(\mathbb{P}^{\circ}, W, \mathbb{C}^*_{\omega})$.

- 3. Apply \mathbb{C}^*_{ω} -localization.
- 4. Compute, compute, compute!

Target set-up for $X_5 \subset \mathbb{P}^4$

$$\mathcal{C}_{pri}(f) = \mathcal{C}_{pi}(-5) = \mathcal{C}_{pi}(f) = \mathcal{C}_{pi}(-5) = \mathcal{C}_{pi}(f) = \mathcal$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Target set-up for $X_{33} \subset \mathbb{P}^5$

$$(\mathbb{P}^{\circ} \ \subset \ \mathbb{P}, \ W \colon \mathbb{P}^{\circ} \ \rightarrow \ \mathbb{C}, \ \mathbb{C}_{\omega}^{*})$$

 $\mathbb{P}^{\circ} = \mathcal{O}_{\mathbb{P}^{5}}(-3) \oplus \mathcal{O}_{\mathbb{P}^{5}}(-3) = \mathbb{C}^{8} / / \mathbb{C}^{*}$ $1 \quad 1 \quad 1 \quad 1 \quad 1 \quad -3 \quad -3$ $\mathbb{P} = \mathbb{P}_{\mathbb{P}^{5}}(\mathcal{O}(-3) \oplus \mathcal{O}(-3) \oplus \mathcal{O})$ $1 \quad 1 \quad 1 \quad 1 \quad 1 \quad -3 \quad -3 \quad 0$ $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $W = p_1 F_3(\vec{x}) + p_2 G_3(\vec{x})$

More on localization formula for X_5

• Component $Z \to 0$: twisted Gromov–Witten theory of $\mathcal{O}_{\mathbb{P}^4}(5)$.

 $\left(\mathbb{P}^{*}_{, 0, \mathcal{C}^{*}_{w}}\right)$

compute generating series via Givental formalism

• Component $Z \rightarrow \infty$: new "effective" invariants B∽V don't know how to compute • one for every (g, d) such that $2g - 2 - 5d \ge 0$ (i.e. $d \le \frac{2g-2}{5}$) $f: Z \rightarrow \infty \in \mathbb{P}^{d}$ deg (14 0 f "10 (-5)) ~s effictive is polynomial in Novikov pariable ・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

From localization formula to structure of $GW(X_5)$

- Prove structure for twisted theory using Givental formalism (study Picard–Fuchs equation, ring of generators, compute Sand R-matrices).
- Prove that structure is preserved under localization graph sum.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Perform equivariant limit.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで