The logarithmic gauged linear sigma model: Applications

Felix Janda

IAS/University of Notre Dame
August 21, 2020
joint works (partially in progress) with Q. Chen, S. Guo, Y. Ruan and A. Sauvaget
arXiv: 1906.04345, 1812.11908, 1805.02304, 1709.07392

Example applications

1. Structure of Gromov-Witten theory of $X_{5} \subset \mathbb{P}^{4}$ (finite generation, HAEs, orbifold regularity)
Chang-Li-Li-Liv-Guo
2. Structure of Gromov-Witten theory of $X_{33} \subset \mathbb{P}^{5}$
3. LG/CY correspondence for $X_{5} \subset \mathbb{P}^{4}$
4. Conjectures of Oberdieck-Pixton for Gromov-Witten theory of Weierstrass elliptic fibrations L / X. Wang
in progress

Using log GLSM in a nutshell

1. Set-up GLSM target $\left(\mathbb{P}^{\circ}, W, \mathbb{C}_{\omega}^{*}\right)$ for problem
2. Set-up $\log \operatorname{GLSM}\left(\mathbb{P}, W, \mathbb{C}_{\omega}^{*}\right)$ target that recovers $\left(\mathbb{P}^{\circ}, W, \mathbb{C}_{\omega}^{*}\right)$.
3. Apply \mathbb{C}_{ω}^{*}-localization.
4. Compute, compute, compute!

Target set-up for $X_{5} \subset \mathbb{P}^{4}$

$$
\begin{aligned}
& \text { Compadify } \\
& \left(\mathbb{P}^{\circ} \subset \mathbb{P}, W: \mathbb{P}^{\circ} \rightarrow \mathbb{C}, \mathbb{C}_{\omega}^{*}\right) \\
& \mathbb{P}^{0}=\prod_{p^{4}}(-5)=\mathbb{C}^{6} / / \mathbb{C}^{2} \neq \text { gauge gT } \\
& \begin{array}{lll}
1 & 1111 & -5 \\
x_{1} & \lambda_{5} & P
\end{array} \\
& \mathbb{P}=\mathbb{T}_{\mathbb{D}^{2}}((0(-5) \in \cdot(0) \\
& \begin{array}{r}
|11| 1-5 \\
1
\end{array}
\end{aligned}
$$

$w=p F_{\bar{S}}\left(X_{x}\right)$ ple of onde 1 alang ∞

Target set-up for $X_{33} \subset \mathbb{P}^{5}$

$$
\left(\mathbb{P}^{\circ} \subset \mathbb{P}, W: \mathbb{P}^{\circ} \rightarrow \mathbb{C}, \mathbb{C}_{\omega}^{*}\right)
$$

$$
W=p_{1} F_{3}(\vec{x})+p_{2} G_{3}(\vec{x})
$$

$$
\begin{aligned}
& \mathbb{P}^{\circ}=\mathcal{O}_{\mathbb{P}^{5}}(-3) \oplus \mathcal{O}_{\mathbb{P}^{5}}(-3)=\mathbb{C}^{8} / / \mathbb{C}^{*} \\
& \begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & -3 & -3
\end{array} \\
& \mathbb{P}=\mathbb{P}_{\mathbb{P}^{5}}(\mathcal{O}(-3) \oplus \mathcal{O}(-3) \oplus \mathcal{O}) \\
& \begin{array}{llllllccc}
1 & 1 & 1 & 1 & 1 & 1 & -3 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\end{array}
\end{aligned}
$$

Moduli space and localization formula
Theorem (Chen-J-Ruan) Quale's stall

There is a compactification \mathcal{U} of the GLSM moduli space whose reduced virtual cycle $[\mathcal{U}]$ red recovers the GLSM invariants.

Theorem (Chen-J-Ruan (work in progress))
Localization formula for $[\mathcal{U}]^{\text {red }}$.

More on localization formula for X_{5}

$$
\left(\mathbb{P}^{0}, O, \mathbb{C}_{w}^{+}\right)
$$

- Component $Z \rightarrow 0$: twisted Gromov-Witten theory of $\mathcal{O}_{\mathbb{P}^{4}}(5)$.
compute generating series via Givental formalism
- Component $Z \rightarrow \infty$: new "effective" invariants
- don't know how to compute
- one for every (g, d) such that $2 g-2-5 d \geq 0$ (ie. $\underbrace{d \leq \frac{2 g-2}{5}}_{/ /}$)
\leadsto effective is polynomial in Novikou variable

From localization formula to structure of $\operatorname{GW}\left(X_{5}\right)$

- Prove structure for twisted theory using Givental formalism (study Picard-Fuchs equation, ring of generators, compute S and R-matrices).
- Prove that structure is preserved under localization graph sum.
- Perform equivariant limit.

Target geometry for LG/CY for X_{5}

$$
\begin{aligned}
& \operatorname{Gu}\left(x_{5}\right) \longleftrightarrow \operatorname{LG}\left(x_{5}\right) \quad \mathbb{R}_{6}^{0}=\left[\begin{array}{c}
\mathbb{C}_{5}^{5} / R_{5} \\
p_{5} / m_{5}
\end{array}\right. \\
& \begin{array}{r}
1111-5 \\
512+\cdots 11111-5,11110,1 \\
1111
\end{array}
\end{aligned}
$$

 correspendence of effative inuts.

