Worldsheet instantons in Heterotic string theory

Based on: [Buchbinder, Lukas, Ovrut, FR, 1912.07222] [Buchbinder, Lukas, Ovrut, FR, 1912.08358] [Buchbinder, Lukas, Ovrut, FR, 1707.07214]

Fabian Ruehle (CERN & UNIVERSITY OF OXFORD)

GLSM 2020 08/21/2020

$$W_{\gamma} = \sum_{i=1}^{n_{\gamma}} \frac{\operatorname{Pfaff}(\overline{\partial}_{V_{\gamma_i} \otimes \mathcal{O}_{\gamma_i}(-1)})}{[\operatorname{det}(\overline{\partial}_{\mathcal{O}_{\gamma_i}})]^2 \operatorname{det}(\overline{\partial}_{N\gamma_i})} \exp\left[-\int_{\gamma} \frac{J}{2\pi\alpha'} - iB\right]$$

- Contributions depend on
 - Kahler moduli t_i
 - CS moduli κ_I
 - Bundle moduli α_a

$$W_{\gamma} = \sum_{i=1}^{n_{\gamma}} \frac{\operatorname{Pfaff}(\overline{\partial}_{V_{\gamma_{i}} \otimes \mathcal{O}_{\gamma_{i}}(-1)})}{[\det(\overline{\partial}_{\mathcal{O}_{\gamma_{i}}})]^{2} \det(\overline{\partial}_{N\gamma_{i}})} \exp\left[-\int_{\gamma} \frac{J}{2\pi\alpha'} - iB\right]$$

Genus 0 GW invariants

- Contributions depend on
 - Kahler moduli t_i
 - CS moduli κ_I
 - Bundle moduli α_a

$W_{\gamma} = \sum_{i=1}^{n_{\gamma}} \frac{\operatorname{Pfaff}(\overline{\partial}_{V_{\gamma_i} \otimes \mathcal{O}_{\gamma_i}})}{[\operatorname{det}(\overline{\partial}_{\mathcal{O}_{\gamma_i}})]^2 \operatorname{det}}$

Integral over right-moving fermionic WS d.o.f.

Contributions depend on

- Kahler moduli t_i \bullet
- CS moduli κ_I
- Bundle moduli α_a \bullet

$$\frac{\gamma_i(-1)}{\operatorname{et}(\overline{\partial}_N\gamma_i)} \exp\left[-\int_{\gamma} \frac{J}{2\pi\alpha'} - iB\right]$$

$W_{\gamma} = \sum_{i=1}^{n_{\gamma}} \frac{\operatorname{Pfaff}(\overline{\partial}_{V_{\gamma_i}} \otimes \mathcal{O}_{\gamma_i})}{[\det(\overline{\partial}_{\mathcal{O}_{\gamma_i}})]^2 \det^2}$

Vector bundle restricted to curve $\gamma = \mathbb{P}^{\perp}$

- Contributions depend on
 - Kahler moduli t_i
 - CS moduli κ_I
 - Bundle moduli $lpha_a$

$$\frac{\gamma_i(-1)}{\operatorname{et}(\overline{\partial}_N\gamma_i)} \exp\left[-\int_{\gamma} \frac{J}{2\pi\alpha'} - iB\right]$$

$W_{\gamma} = \sum_{i=1}^{n_{\gamma}} \frac{\operatorname{Pfaff}(\overline{\partial}_{V_{\gamma_i} \otimes \mathcal{O}_{\gamma_i}})}{[\det(\overline{\partial}_{\mathcal{O}_{\gamma_i}})]^2 \det}$ Spin bundle on $\gamma = \mathbb{P}^1$

Contributions depend on

- Kahler moduli t_i
- CS moduli κ_I
- Bundle moduli $lpha_a$

$$\frac{\gamma_i(-1)}{\operatorname{et}(\overline{\partial}_N\gamma_i)} \exp\left[-\int_{\gamma} \frac{J}{2\pi\alpha'} - iB\right]$$

$W_{\gamma} = \sum_{i=1}^{n_{\gamma}} \frac{\operatorname{Pfaff}(\overline{\partial}_{V_{\gamma_i} \otimes \mathcal{O}_{\gamma_i}})}{[\det(\overline{\partial}_{\mathcal{O}_{\gamma_i}})]^2 \operatorname{de}}$

Introduce notation $V_{-1} := V \otimes \mathcal{O}_{\gamma}(-1)$

Contributions depend on

- Kahler moduli t_i
- CS moduli κ_I
- Bundle moduli $lpha_a$

$$\frac{\gamma_i(-1)}{\operatorname{et}(\overline{\partial}_N\gamma_i)} \exp\left[-\int_{\gamma} \frac{J}{2\pi\alpha'} - iB\right]$$

Constant

- Contributions depend on
 - Kahler moduli t_i
 - CS moduli κ_I
 - Bundle moduli $lpha_a$

$$\frac{\gamma_i(-1)}{\operatorname{et}(\overline{\partial}_N\gamma_i)} \exp\left[-\int_{\gamma} \frac{J}{2\pi\alpha'} - iB\right]$$

$W_{\gamma} = \sum_{i=1}^{n_{\gamma}} \frac{\operatorname{Pfaff}(\overline{\partial}_{V_{\gamma_i} \otimes \mathcal{O}_{\gamma_i}})}{[\det(\overline{\partial}_{\mathcal{O}_{\gamma_i}})]^2 \det}$ Integral over bos d.o.f. Note: $N\mathbb{P}^1 = \mathcal{O}(-1) \times \mathcal{O}(-1)$

Contributions depend on

- Kahler moduli t_i
- CS moduli κ_I
- Bundle moduli $lpha_a$

$$\frac{\gamma_i(-1)}{\operatorname{et}(\overline{\partial}_N\gamma_i)} \exp\left[-\int_{\gamma} \frac{J}{2\pi\alpha'} - iB\right]$$

$$W_{\gamma} = \sum_{i=1}^{n_{\gamma}} \frac{\operatorname{Pfaff}(\overline{\partial}_{V_{\gamma_i} \otimes \mathcal{O}})}{[\det(\overline{\partial}_{\mathcal{O}_{\gamma_i}})]^2 \, \mathrm{de}}$$

Contributions depend on

- Kahler moduli t_i
- CS moduli κ_I
- Bundle moduli $lpha_a$

- Work at arbitrary but fixed CS \Rightarrow Focus on computing the Pfaffians
- Pfaff = 0 $\Leftrightarrow \overline{\partial}_{V_{-1}}$ has a zero-mode $\Leftrightarrow h^0(\mathbb{P}^1, V_{-1}) \neq 0$
- $h^0(\mathbb{P}^1, V_{-1}) = 0$ generically, but cohomology can jump at codim 1 locus
- Pfaff is proportional to poly that describes the jump locus [Buchbinder, Donagi, Ovrut, hep-th/0205190]
- To compute $Pfaff(\kappa_I, \alpha_a)$:
 - 1. Find the coordinates $\vec{z_i}^*$ of all repre
 - 2. Parameterize bundle moduli space n_{γ}

i=1

3. Compute the Pfaffians: $\sum Pfaff_{\gamma_i}$

esentatives
$$\gamma_i$$
 of $[\gamma] = [\mathbb{P}^1]$
 $\in \mathbb{C}^*$
 $(\kappa_I, \alpha_a) = \sum_{i=1}^{n_{\gamma}} \lambda_i p_{r; d_1, \dots, d_{h^{11}}} (\alpha_a; \vec{z}_i^*(\kappa_I))$

- Beasley-Witten cancellation: [Beasley, Witten hep-th/0304115]
 - Consistent compactification (stable vector bundle, BI+HYM solved) Gauge bundle pulls back from the ambient space
 - \bullet
 - Right-moving WS SUSY
 - Instanton moduli space compact

$$\sum_{i=1}^{n_{\gamma}} \operatorname{Pfaff}_{\gamma_i}(\kappa_I, \alpha_a) = \sum_{i=1}^{n_{\gamma}} \lambda_i p_{r; d_1, \dots, d_h^{11}} (a)$$

- Cancellation has to hold at any point in moduli space
 - If $p_{r;d_1,\ldots,d_h^{11}}(\alpha_a; \vec{z}_i^*(\kappa_I))$ are linear independent \Rightarrow no BW cancellation
 - If $p_{r;d_1,\ldots,d_h^{11}}(\alpha_a; \vec{z}_i^*(\kappa_I))$ are linear dependent \Rightarrow thousands of terms can cancel by choosing $n_{\gamma} = \mathcal{O}(20)$ complex constants λ_i (highly non-trivial if there is not a reason why the monomials align this way)

- Checked for quintic $(h^{11} = 1, n_{\gamma} = 2875)$ in (half-) linear sigma model [Beasley, Witten hep-th/0304115]
- Compactness of instanton moduli space very hard to check
- Simple criterion for GLSMs [Bertolini, Plesser 1410.4541]

	\mathcal{Z}_I	P_k	A_{lpha}	B_eta	S	[1]	
$\mathrm{U}(1)^i$	Q_{I}^{i}	$-q_k^i$	a^i_lpha	$-b^i_eta$	Q_S	Q_{Ξ}	
$\mathrm{U}(1)_L$	0	0	-1	1	1	-1	
$\mathrm{U}(1)_R$	0	1	0	1	1	0	
Interpretation	Geometry	Geometry	Monad	Monad	Sportator	Spectator	
	coordinates	constraints	A-terms	B-terms			

- Yero-modes of s and b can make instanton moduli space non-compact
- For $\gamma = \sum w_r \mu_r$ check $h^0(\mathcal{O}_{\gamma}(-$

$$(b_{\beta}^{i} \cdot w_{i} - 1)) = 0, \quad h^{0}(\mathcal{O}_{\gamma}(Q_{s}^{i} \cdot w_{i} - 1))$$

- Curves in Complete Intersection Calabi-Yaus
- Compute the Pfaffian
 - Monad bundles
 - Extension bundles
- Comparing GLSM and alg. geom. conditions
 - Vanishing instanton sum and Hilbert functions
 - Pfaffians and GLSM quantities

Outline

Curves in Complete Intersection CYs

- Focus on CICYs with ambient space \mathbb{P}^1 factors
- Two possibilities
 - Charges of two P_i are 1, rest zero (type I)
 - Charges of one P_i is 2, rest zero (type II)

[Candelas, Dale, Lutken, Schimmrigk `88; Green and Hubsch `88]

[Hosono, Klemm, Theisen, Yau hep-th/9308122]

 $p_{22}(z_{3,4}; z_{5,\ldots,9}) = q_{22}(z_{3,4}; z_{5,\ldots,9}) = r_{01}(z_{3,4}; z_{5,\ldots,9}) = s_{01}(z_{3,4}; z_{5,\ldots,9}) = 0: z_1, z_2 \text{ arbitrary } \to \mathbb{P}^1$

CICY

5,1,2	$\mathcal{Z}_{3,4}$	$\mathcal{Z}_{5,6,7,8,9}$	P_1	P_2	P_3	
1	0	0	-1	-1	0	$n_{\gamma} = 1$
0	1	0	-2	0	0	$n_{\gamma} = 40$
0	0	1	-2	-1	-2	$n_{\gamma} = 1$

$$z_5 + \tilde{\kappa}_1 z_1 z_6 + \ldots = 0$$

$$\widetilde{\widetilde{\kappa}}_0 z_5^2 + \widetilde{\widetilde{\kappa}}_1 z_5 z_6 + \dots =$$

\downarrow

$$z_{3,4}; z_{5,\ldots,9}) + z_2 s_{01}(z_{3,4}; z_{5,\ldots,9}) = 0$$

()|()Y

5,1,2	$\mathcal{Z}_{3,4}$	$\mathcal{Z}_{5,6,7,8,9}$	P_1	P_2	P_3	
1	0	0	-1	-1	0	$n_{\gamma} = 1$
0	1	0	-2	0	0	$n_{\gamma} = 40$
0	0	1	-2	-1	-2	$n_{\gamma} = 1$

$$z_5 + \tilde{\kappa}_1 z_1 z_6 + \ldots = 0$$

$$\widetilde{\widetilde{\kappa}}_0 z_5^2 + \widetilde{\widetilde{\kappa}}_1 z_5 z_6 + \dots =$$

$$z_4^2 r_{12}(z_{1,2}, \, z_{5,\dots,9}) = 0$$

 $p_{12}(z_{1,2}, z_{5,\ldots,9}) = q_{12}(z_{1,2}, z_{5,\ldots,9}) = r_{12}(z_{1,2}, z_{5,\ldots,9}) = 0$: z_3, z_4 arbitrary $\to \mathbb{P}^1$

CCY

type I: $X \in \begin{vmatrix} \mathbb{P}^1 & 1 & 1 & 0 & \dots & 0 \\ \mathcal{Q} & \hat{q}_1 & \hat{q}_2 & \hat{q}_3 & \dots & \hat{q}_K \end{vmatrix}$

- be obtained from counting solutions to the equations above.
- Get the position of the curve as a function of CS κ_I
- Why? Maybe because of simplicity of the construction?

()()Y

$$\left] \begin{array}{cccc} , & \text{type II} : X \in \left[\begin{array}{c|c} \mathbb{P}^1 & 2 & 0 & \dots & 0 \\ \mathcal{Q} & \hat{q}_1 & \hat{q}_2 & \dots & \hat{q}_K \end{array} \right] \\ \end{array} \right] \left[\begin{array}{cccc} \mathcal{Q} & \hat{q}_1 & \hat{q}_1 & \hat{q}_2 & \dots & \hat{q}_K \end{array} \right]$$

• For all (7'890) CICYs, all single wrapping genus zero GW invariants can

Compute the Pfaffian

Monad bundles

- $\bullet \ 0 \to \mathcal{O}^{N_f} \xrightarrow{g} A \xrightarrow{f} B \to 0 \text{ W/ } A =$
- Take $N_f = 0 : 0 \to V \to A \xrightarrow{f} B \to 0 \text{ w/} f = f(z, \alpha_a) \text{ a rk} A \times \text{rk} B$ matrix
- Bundle moduli $\leftrightarrow H^1(X, V \otimes V^*)$. To compute, twist the dual SES with V:

•
$$0 \to B^* \otimes V \xrightarrow{f^*} A^* \otimes V \to V^* \otimes$$

- sequence or Koszul resolution)
- Pfaff $\leftrightarrow H^0(V_{-1}) = \ker \left[f|_{\mathbb{P}^1} : H^0(A \otimes \mathcal{O}(-1)|_{\mathbb{P}^1}) \to H^0(B \otimes \mathcal{O}(-1)|_{\mathbb{P}^1}) \right]$

$$= \bigoplus_{a=1}^{\mathrm{rk}A} \mathcal{L}(a_1^{\alpha}, \dots, a_{h^{11}}^{\alpha}), \quad B = \bigoplus_{\beta=1}^{\mathrm{rk}B} \mathcal{L}(b_1^{\beta}, \dots, b_{h^{11}}^{\beta})$$

 $\otimes V \to 0$

• Get LES in cohomology (compute ambient space cohomology and restrict to CY via spectral

• Express in terms of $H^{\bullet}(B^* \otimes B)$, $H^{\bullet}(C^* \otimes C)$, $H^{\bullet}(C^* \otimes B)$ and extract $f = f(\alpha_a)$

	$\mathcal{Z}_{1,2}$	$\mathcal{Z}_{3,4}$	$\mathcal{Z}_{5,6,7,8,9}$	P_1	P_2	P_3	A_1	A_2	A_3	A_4	B	S	[I]	
$U(1)_{1}$	1	0	0	-1	-1	0	1	0	0	0	-1	-1	1	$n_{\gamma} = 16$
$U(1)_2$	0	1	0	-2	0	0	0	1	0	1	-2	0	0	$n_{\gamma} = 40$
$U(1)_{3}$	0	0	1	-2	-1	-2	0	0	1	2	-3	-2	2	$n_{\gamma} = 112$

- $0 \to V \to A \xrightarrow{f} B \to 0$ with f =
- Number of bundle moduli: $h^1(X,$

$$= (f_{(0,2,3)}, f_{(1,1,3)}, f_{(1,2,2)}, f_{(1,1,1)})$$

$$, V \otimes V^*) = 228$$

• Restrict and twist by spin bundle: $0 \to V_{-1}|_{\mathbb{P}^1} \to \mathcal{O}(-1) \oplus \mathcal{O}(0) \oplus \mathcal{O}(-1) \oplus \mathcal{O}(0) \to \mathcal{O}(1)$

		$\mathcal{Z}_{1,2}$	$\mathcal{Z}_{3,4}$	$\mathcal{Z}_{5,6,7,8,9}$	P_1	P_2	P_3	A_1	A_2	A_3	A_4	B	S	[I]	
	$U(1)_{1}$	1	0	0	-1	-1	0	1	0	0	0	-1	-1	1	$n_{\gamma} = 16$
	$U(1)_{2}$	0	1	0	-2	0	0	0	1	0	1	-2	0	0	$n_{\gamma} = 40$
	$U(1)_{3}$	0	0	1	-2	-1	-2	0	0	1	2	-3	-2	2	$n_{\gamma} = 112$
$ \underbrace{V} \times V \times A \xrightarrow{f} B \times 0 \text{with} f = (f_0, f_0, f_0, f_0, f_0, f_0, f_0, f_0, $												ſ			

- $\bullet 0 \rightarrow V \rightarrow A \rightarrow B \rightarrow 0 \quad \text{Will} \quad J = (J(0,2,3), J(1,1,3), J(1,2,2), J(1,1,1))$
- Number of bundle moduli: $h^1(X,$
- Restrict and twist by spin bundle

$$(V \otimes V^*) = 228$$

 $(V \otimes V_{-1}|_{\mathbb{P}^1} \to \mathcal{O}(-1) \oplus \mathcal{O}(0) \oplus \mathcal{O}(-1) \oplus \mathcal{O}(0) \to \mathcal{O}(0)$

	$\mathcal{Z}_{1,2}$	$\mathcal{Z}_{3,4}$	$\mathcal{Z}_{5,6,7,8,9}$	P_1	P_2	P_3	A_1	A_2	A_3	A_4	B	S	[I]	
$U(1)_{1}$	1	0	0	-1	-1	0	1	0	0	0	-1	-1	1	$n_{\gamma} = 16$
$ U(1)_2 $	0	1	0	-2	0	0	0	1	0	1	-2	0	0	$n_{\gamma} = 40$
$U(1)_{3}$	0	0	1	-2	-1	-2	0	0	1	2	-3	-2	2	$n_{\gamma} = 112$

- $0 \to V \to A \xrightarrow{f} B \to 0$ with f =
- Number of bundle moduli: $h^1(X)$
- Restrict and twist by spin bundle
- Parameterize $\mathcal{O}^{\oplus 2} \sim \{\omega_1, \omega_2\}$ and $\mathcal{O}(1) \sim \{z_3, z_4\} \Rightarrow$ write map $(\omega_1 \ \omega_1) \begin{pmatrix} p_{1,3}(z_{1,2}, z_{5,\dots,9}) & q_{1,1}(z_{1,2}, z_{5,\dots,9}) \\ r_{1,3}(z_{1,2}, z_{5,\dots,9}) & s_{1,1}(z_{1,2}, z_{5,\dots,9}) \end{pmatrix} \begin{pmatrix} z_3 \\ z_4 \end{pmatrix}$

=
$$(f_{(0,2,3)}, f_{(1,1,3)}, f_{(1,2,2)}, f_{(1,1,1)})$$

$$(V, V \otimes V^*) = 228$$

$$: 0 \to V_{-1}|_{\mathbb{P}^1} \to \mathcal{O}(-1) \oplus \mathcal{O}(0) \oplus \mathcal{O}(-1) \oplus \mathcal{O}(0) -$$

$$(z_{1,1}(z_{1,2}, z_{5,...,9}))$$

$$\delta = egin{pmatrix} p_{1,3}(z_{1,2},z_{5,\ldots,9}) & q \ r_{1,3}(z_{1,2},z_{5,\ldots,9}) & s \end{pmatrix}$$

$$p_{1,3}(z_{1,2}, z_{5,...,9}) = \sum_{i=1}^{70} \alpha_i \, m_{1,3}^i(z_{1,2}, z_{5,...,9}) \qquad q_{1,1}(z_{1,2}, z_{5,...,9}) = \sum_{i=1}^{10} \alpha_i' \, m_{1,1}^i(z_{1,2}, z_{5,...,9}) \\ r_{1,3}(z_{1,2}, z_{5,...,9}) = \sum_{i=1}^{70} \alpha_i'' \, m_{1,3}^i(z_{1,2}, z_{5,...,9}) \qquad s_{1,3}(z_{1,2}, z_{5,...,9}) = \sum_{i=1}^{10} \alpha_i''' \, m_{1,1}^i(z_{1,2}, z_{5,...,9})$$

This map degenerates where def
BW:
$$\sum_{i=1}^{40} \lambda_i \det(\delta(\vec{z}_i^*)) = 0 \rightarrow 1'400 \times$$

 $\begin{pmatrix} q_{1,1}(z_{1,2}, z_{5,...,9}) \\ s_{1,1}(z_{1,2}, z_{5,...,9}) \end{pmatrix}$ with

 $t(\delta) = 0 \rightarrow 1'400$ terms bilinear in α

 \times 40 coefficient matrix. This has rank 39!

Extension bundles

- Simplest example Single extension: $0 \rightarrow B \rightarrow V \rightarrow C \rightarrow 0$
- Moduli space: $\mathcal{M}_X(V) = \operatorname{Ext}^1(C, B) \cong H^1(C^* \otimes B)$
- Next step Double extension: $0 \to A \to V' \to B \to 0$, $0 \to V' \to V \to C \to 0$
- Moduli space: $\mathcal{M}_X(V') = \operatorname{Ext}^1(B, A) \cong H^1(B^* \otimes A)$ $\mathcal{M}_X(V) = \operatorname{Ext}^1(C, V') \cong H^1(C^* \otimes V')$
- Compute by twisting first sequence by C^* , look at LES in cohomology, compute ambient space cohomologies, use Koszul resolution to restrict to CY

Extension bundles - Example

• Geometry:

 $h^{\bullet}(\mathcal{O}_{\mathcal{P}}(a_1 - b_1)) = (0, 0, 0, 40, 0, 0, 0), \qquad h^{\bullet}(\mathcal{O}_X(a_1 - b_1)) = (0, 16, 0, 0),$ $h^{\bullet}(\mathcal{O}_{\mathcal{P}}(a_1 - b_2)) = (0, 21, 0, 0, 0, 0, 0), \qquad h^{\bullet}(\mathcal{O}_X(a_1 - b_2)) = (0, 21, 25, 0).$

• Focus on first curve class ($n_{\gamma} = 2$) and look at $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2 \times$

Bundle:

 $0 \to A \to V \to B \to 0$ $egin{aligned} A &= \mathcal{O}_X(-2,3,-1,1) \ B &= \mathcal{O}_X(0,0,2,-2) \oplus \mathcal{O}_X(2,-3,-1,1) \end{aligned}$

• Compute bundle moduli (Note: $h^1(\mathcal{O}_X(a_1 - b_1))$ does not descend from ambient space, but the Pfaffian happens to not depend on these):

$$\underbrace{\times \mathbb{P}^2}_{Q} \stackrel{\pi_Q}{\mapsto} \underbrace{\mathbb{P}^1 \times \mathbb{P}^2 \times \mathbb{P}^2}_{Q}$$

Extension bundles - Example

Using Kunneth, Bott and Serre duality: $H^{1}(\mathcal{O}_{\mathcal{A}}(a_{1}-b_{2})) = H^{1}(\mathcal{O}_{\mathcal{A}}(4,6,0,0)) = H^{1}(\mathcal{O}_{\gamma}(-4)) \otimes H^{1}(\mathcal{O}_{Q}(6,0,0))$

- Choose basis $\{r_0^2, r_0r_1, r_1^2\}$ of $H^0(O_{\gamma}(2))^*$ and expand $v \in H^1(\mathcal{O}_{\mathcal{A}}(-4, 6, 0, 0))$: $v = r_0^2 f_{6,0,0}^{(1)}(\vec{z}_2, \vec{z}_3, \vec{z}_4) + r_0 r_1 f_{6,0,0}^{(2)}(\vec{z}_2, \vec{z}_3, \vec{z}_4) + r_1^2 f_{6,0,0}^{(3)}(\vec{z}_2, \vec{z}_3, \vec{z}_4)$
- Take extension, tensor with $\mathcal{O}(-1,0,0,0)$, take direct image with π_Q , look at LES, use Bott: $H^0(V_{-1}) \to H^0(\mathcal{O}_{\gamma}(1) \otimes \mathcal{O}_Q(-3, -1, 1)) \xrightarrow{f} H^1(\mathcal{O}_{\gamma}(-3) \otimes \mathcal{O}_Q(3, -1, 1))$ $\begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix} \\ \begin{pmatrix} \cdot \\ 4 \end{pmatrix} \\$

$$f = \begin{pmatrix} f_{6,0,0}^{(1)}(\vec{z}_2, \vec{z}_3, \vec{z}_4) & f_{6,0,0}^{(2)}(\vec{z}_2, \vec{z}_3, \vec{z}_4) \\ f_{6,0,0}^{(2)}(\vec{z}_2, \vec{z}_3, \vec{z}_4) & f_{6,0,0}^{(3)}(\vec{z}_2, \vec{z}_3, \vec{z}_4) \end{pmatrix}$$

• Now Pfaff $\leftrightarrow H^0(V_{-1}) \Rightarrow \det(f) = 0$ is the jumping locus

 $H^0(O_{\gamma}(2))^*$

Comparing GLSM and alg. geom. conditions

Vanishing instanton sum and Hilbert series

- What causes BW cancelation in algebraic geometry?
 - If I took just 40 arbitrary points, the $1'400 \times 40$ matrix would have rank 40
 - The entries of the coefficient matrix are polynomials in $\vec{z_i}^*$, which themselves are complicated functions of the CS coefficients in the defining equations of the CY
 - The solutions that determine the position of the \mathbb{P}^1 s as a function of κ are correlated to move on some subvariety that preserves the cancelation
 - Moreover, the number of monomials in these polynomials is linked to the number of vector bundle moduli
- It should be possible to formulate a criterion purely based on (X, V)

- Think of the complete intersection that specifies the n_{γ} points where the \mathbb{P}^1 lives as a zero-dimensional algebraic variety w/ associated projective ideal $I = \langle P_1, \dots, P_{K+2} \rangle$
- By going to a patch, we can alternatively think of an associated affine ideal $J = \langle P_1, \dots, P_{K+2}, z_{1,0} 1, \dots, z_{m,0} 1 \rangle$
- This induces maps between the associated (projective and affine) coordinate rings: $\mathbb{C}[z] \xrightarrow{r} S \xrightarrow{l} A \quad \text{w/} \quad S = \mathbb{C}[z]/I, \quad A = \mathbb{C}[z]/J$
- Note: S and A depend on the polynomials $P_i\;$ but not on the precise loci of the \mathbb{P}^1

• The coordinate rings $\mathbb{C}[z]$ and $S = \mathbb{C}[z]/I$ are multi-graded with standard Hilbert functions/series: $h_S(k) = \dim(S_k)$, $H_S(t) = \sum h_S(k)t^k$ w/ $t^k = t_1^{k_1} \cdots t_m^{k_m}$ • For 0-dimensional varieties: $h_S(k) \to n_\gamma$ for $k \gg 1$ (compute from syzygies) • $A = \mathbb{C}[z]/J$ is not graded, but can define a filtration by sub-algebras $A_{\leq k}$ of degree $\leq k$: $h_A(k) = \dim(A_{\leq k})$, $H_A(t) = \sum h_A(k)t^k$ (compute from Grobner) • Since $A_{\leq k} = l(S_k)$, we have $h_S(k) \ge h_A(k)$, but still $h_S(k) \to n_\gamma$ for $k \gg 1$

Next, we will see that $h_A(k) = n_\gamma \implies$ Pfaffians lin. indep. \implies No BW cancelation

- Consider a polynomial $f \in \mathbb{C}[z]$ with class $[f] = l \circ r(f) \in A$
- Define a linear map $\mu : \mathbb{C}[y] \to \operatorname{End}(A), \ \mu(f)(a) = [f](a)$
 - $\mu(f)$ acts by mult. in $A \Rightarrow \mu(f) \times \mu(\tilde{f}) = \mu(\tilde{f})\mu(f) \Rightarrow$ lin. maps on A can be simultaneously diagonalized
 - Result in AG: $\{f(z_1^*), f(z_2^*), \ldots, f(z_{n_\gamma}^*)\} = \{\text{Eigenvalues of } \mu(f)\}$
- We now choose for f a basis of polynomials $(f_I)_{I=1,...,N}$ that appear in the Pfaffian (whose coefficients are the bundle moduli) and consider the $N \times n_{\gamma}$ coefficient matrix $M_{Ii} = f_I(\vec{z}_i^*)$
 - All these f_I can be diagonalized simultar $(M_{I,1}, \ldots, M_{I,n_{\gamma}})$
 - Hence $\operatorname{rk}(M) = \dim(\mu(\mathbb{C}[y]_k)) = \dim(A)$

• All these f_I can be diagonalized simultaneously, and the eigenvalues of $\mu(f_I)$ are the entries

$$l \circ r(\mathbb{C}[y]_k)) = \dim(A_{\leq k}) = h_A(k)$$

Comparing GLSM and alg. geom. conditions Pfaffians and GLSMs

- Consider (two-term) SU(3) monad bundles
 - Restrict to cases where the monad bundle charges a^i_{α} and b^i_{β} are non-negative (better chance for vector bundle to be stable)
 - In this case $h^0(\mathcal{O}_{\gamma}(-b^i_{\beta} \cdot w_i 1)) = 0$ and only spectators can (potentially) decompactify the instanton moduli space
 - Consider cases with a single line bundle for B
 - Focus (wlog) on instanton contributions in cohomology class of first ambient space \mathbb{P}^1 factor

$$0 \to V \to \bigoplus_{\alpha=1}^{4} \mathcal{O}_X(a_\alpha, \hat{a}_\alpha) \to \mathcal{O}_X(b, \hat{b}) \to 0$$

Pfaffians and GLSMs

$$0 \to V \to \bigoplus_{\alpha=1}^{4} \mathcal{O}_{\alpha}$$

• Part of the (linear) GLSM anomalies impose $c_1(V) = 0$:

$$\sum_{\alpha=1}^{4} a_{\alpha} = b, \qquad \sum_{\alpha=1}^{4} \hat{a}_{\alpha} = \hat{b}$$

• The (pure quadratic) GLSM anomaly $A_{1,1} = 0$ imposes

For type I: $\sum a_{\alpha}a_{\alpha'} = 0 \implies a_1 \in \mathbb{Z}_{\geq 0}, \ a_2 = a_3 = a_4 = 0$ $\alpha < \alpha'$ For type II: $\sum a_{\alpha}a_{\alpha'} = 1 \implies a_1 = a_2 = 1, \ a_3 = a_4 = 0$ $\alpha < \alpha'$

- The (linear) GLMS anomalies that impose the CY condition $c_1(TX) = 0$ restrict the sum of the charges of the fields defining the geometry to 2
- For type I: spectators will destabilize the vacuum for $a_1 > 2$ For type II: spectators will not destabilize the vacuum

Pfaffians and GLSMs

 $\mathcal{O}_X(a_\alpha, \hat{a}_\alpha) \to \mathcal{O}_X(b, \hat{b}) \to 0$

For type I:
$$q_1^i + q_2^i = a_1(b^i - a_1^i)$$

For type II: $2q_1^i = 2b^i - a_1^i - a_2^i$

model-independent statements)

We observe that the RHS of these anomaly conditions are precisely the degree of the Pfaffian polynomials (continues to hold for more complicated monads, e.g. where rk(B)=2)

Pfaffians and GLSMs

• Combined with (mixed quadratic) GLSM anomalies $A_{1,i} = 0$ we get

• More constraints from $A_{i,j} = 0$ (but I could not use them to infer more

Vanishing of Pfaffians

- and cannot cancel a la BW
- We find that in ALL cases, even when the spectators have zero modes that can
 - 1. The examples are so simple that this has to happen.
 - values such that the lin. dep. terms do not cancel

3. There is some other reason (beyond BW) why the Pfaffians cancel on these spaces

matrix with $N \gg n_{\gamma}$ does not have full rank

• From Hilbert series: $h_A(K) = n_\gamma$ for large enough $k \Rightarrow$ eventually Pfaffians are lin. indep.

• On the other hand, we looked at all CICYs with $h^{1,1} = 3$ and scanned over 2-term SU(3) monads w/ rk(B)=1,2. There are over 100 consistent models on more than 30 CICYs

decompactifive the instanton moduli space, the Pfaffians are lin. dep. Possible explanations:

2. If we computed the complex coefficients λ_i (e.g. via a residue theorem), we would find their numerical

• If 1. is the case, there should be a reason why the terms conspire such that an $N imes n_{\gamma}$

Conclusions

- \bullet From an algebraic point of view, Pfaffians can be computed (up to a complex constant) for all ambient space \mathbb{P}^1 curve classes for all CICYs
- For constructions that have a GLSM description, can match onto Bertolini-Plesser
- Can formulate a necessary condition for non-vanishing of the Pfaffian contributions in terms of affine Hilbert functions
- The degree of the Pfaffians appear in the GLSM anomaly conditions
- Checking more than hundred examples, we found that the Pfaffians are linearly dependent, irrespective of whether the instanton moduli space is compact

Thank you very much for your attention!