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Introduction

Quantum cohomology is a generalization of ordinary
cohomology ring, which encodes enumerative data
(Gromov-Witten invariants) of a Kähler manifold X.

For a holomorphic vector bundle E over X, one can define
quantum sheaf cohomology (QSC), which is computed by
A/2 twsited correlation functions of the corresponding (0,2)
theory. [Katz, Sharpe 04’]

QSC is a finite-dimensional truncation of the chiral ring,
topological at least in a neighborhood of the (2,2) locus.
[Adams, Distler, Ernebjerg, 05’]

The underlying vector space is
⊕

p,q Hp(X,∧qE∨).
QSC reduces to quantum cohomology when E = TX.((2,2)
locus)
Ring structures have been solved for toric varieties [McOrist,

Melnikov, 07’] [Donagi, Guffin, Katz, Sharpe, 11’], Grassmannians [JG, Lu,

Sharpe, 15’] and flag manifolds [JG 18’].
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Pseudo-Topological Twist of 2d (0,2) Theries

JL/R: Left/Right U(1)R symmetry. JV = JL + JR, JA = JL − JR.
Twist replaces the group U(1)r of worldsheet rotations with
the diagonal subgroup of U(1)r × U(1)V (A/2 twist) or
U(1)r × U(1)A (B/2 twist).
They reduce to A model and B model in the (2,2) case.
Not a topological theory, but chiral ring contains a
topological subsector (RR ground states) in a
neighborhood of (2,2) locus.
In the A/2 model, ch2(E) = ch2(TX), det E∨ ∼= KX, the states
are counted by H•(X,∧•E∨).
OPE→ Quantum Sheaf Cohomology
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QSC of (0,2) GLSMs with (2,2) locus

QSC has the form A/(I + R)

→ Goal: Find the generators
of A, I and R. (A and I are independent of the (0,2)
deformation.)

We consider theories without J-terms, therefore the
R-charge of the chiral multiplets can be taken zero.
The E-terms are given by

D+Λi = Ei(Σ,Φj) Coulomb branch−−−−−−−−−−−→ Ei = σaEa
i (φ).

Mass matrix: Mij = ∂Ei
∂φj

∣∣∣
φ=0

.

An operator OR is zero in the quantum sheaf cohomology if
and only if the A/2 correlation function 〈ORO〉 = 0 for any
operator O.
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QSC of (0,2) GLSMs with (2,2) locus

In the classical limit, localization on Coulomb branch
[Closset, Gu, Jia, Sharpe, 15’] implies

Res(0)
∆2ORO∏

γ

∏
ργ∈Rγ

(
det(M(γ,ργ))

)dσ1 ∧ · · · ∧ dσrk(G) = 0

∆ ≡
∏
α>0 α(σ). α : positive roots of the gauge group.

∆2 · OR must lie in the ideal generated by det(M(γ,ργ)) with
γ and ργ running over all the representations and weights
of the matter multiplets.
If on the (2,2) locus the quantum cohomology has a
representation A/(I + R), then there is a set of generators
hr of R such that for each r, ∆2hr is a function of
det(M(γ,ργ)),i.e.

∆2hr = Pr(det(M(γ,ργ))).



QSC of (0,2) GLSMs with (2,2) locus

In the classical limit, localization on Coulomb branch
[Closset, Gu, Jia, Sharpe, 15’] implies

Res(0)
∆2ORO∏

γ

∏
ργ∈Rγ

(
det(M(γ,ργ))

)dσ1 ∧ · · · ∧ dσrk(G) = 0

∆ ≡
∏
α>0 α(σ). α : positive roots of the gauge group.

∆2 · OR must lie in the ideal generated by det(M(γ,ργ)) with
γ and ργ running over all the representations and weights
of the matter multiplets.
If on the (2,2) locus the quantum cohomology has a
representation A/(I + R), then there is a set of generators
hr of R such that for each r, ∆2hr is a function of
det(M(γ,ργ)),i.e.

∆2hr = Pr(det(M(γ,ργ))).



QSC of (0,2) GLSMs with (2,2) locus

In the classical limit, localization on Coulomb branch
[Closset, Gu, Jia, Sharpe, 15’] implies

Res(0)
∆2ORO∏

γ

∏
ργ∈Rγ

(
det(M(γ,ργ))

)dσ1 ∧ · · · ∧ dσrk(G) = 0

∆ ≡
∏
α>0 α(σ). α : positive roots of the gauge group.

∆2 · OR must lie in the ideal generated by det(M(γ,ργ)) with
γ and ργ running over all the representations and weights
of the matter multiplets.

If on the (2,2) locus the quantum cohomology has a
representation A/(I + R), then there is a set of generators
hr of R such that for each r, ∆2hr is a function of
det(M(γ,ργ)),i.e.

∆2hr = Pr(det(M(γ,ργ))).



QSC of (0,2) GLSMs with (2,2) locus

In the classical limit, localization on Coulomb branch
[Closset, Gu, Jia, Sharpe, 15’] implies

Res(0)
∆2ORO∏

γ

∏
ργ∈Rγ

(
det(M(γ,ργ))

)dσ1 ∧ · · · ∧ dσrk(G) = 0

∆ ≡
∏
α>0 α(σ). α : positive roots of the gauge group.

∆2 · OR must lie in the ideal generated by det(M(γ,ργ)) with
γ and ργ running over all the representations and weights
of the matter multiplets.
If on the (2,2) locus the quantum cohomology has a
representation A/(I + R), then there is a set of generators
hr of R such that for each r, ∆2hr is a function of
det(M(γ,ργ)),i.e.

∆2hr = Pr(det(M(γ,ργ))).



QSC of (0,2) GLSMs with (2,2) locus

When there is (0,2) deformation (M(γ,ργ) → M̃(γ,ργ)), a set
of generators h̃r of R can be found from

∆2h̃r = Pr(det(M̃(γ,ργ))).

Quantum corrections are encoded in the effective J-terms
on the Coulomb branch:

Ja = τ a − 1
2πi

∑
γ

∑
ργ∈Rγ

ρa
γ log

(
det(M(γ,ργ))

)
− 1

2

∑
α>0

αa.

Quantum relations: Ja = 0⇒ h̃r(q) = 0.
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Grassmannians

G(k,N): U(k) gauge theory with N chiral multiplets in the
fundamental representation.
Chiral multiplets: Φi

α, Fermi multiplets: Λi
α,

α = 1, · · · , k, i = 1, · · · , n.
D+Λi

α = σβαΦi
β + Ai

j(Trσ)Φj
α.

Left moving fermions couple to the vector bundle E defined
by

0→ S ⊗ S∗ g→ V ⊗ S∗ → E → 0.

g : ωβα 7→ ωβαxi
β + ωββAi

jx
j
α.

σ1, · · · , σk: coordinates on the Coulomb branch
Residual Weyl group⇒ Gauge invariant operator =
Symmetric polynomial in σi

Basis: Schur Polynomials in σi.
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Grassmannians

H•(G(k,N),C) = C[x1, x2, · · · , y1, y2, · · · ]/(I + R),
R is generated by {xi, yj | i > k, j > N − k},
I is generated by

{∑
i+j=m xiyj | m > 0

}
. (xi and yj are

Chern classes of tautological bundle S and universal
quotient bundle Q. )

Diagonal elements of σ: Chern roots of S∨.
xi = (−1)iS(1i)(σ1, · · · , σk), yj = S(j)(σ1, · · · , σk).

With deformation given by D+Λi
α = Σβ

αΦi
β + Ai

j(TrΣ)Φj
α,

the
generators of R:
yN−k+r → RN−k+r =

∑min{N,N−k+r}
i=0 Ii(y1A)yN−k+r−i.

(Ii: i-th characteristic polynomial)
quantum: RN−k+r + qyr−k = 0.
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Flag manifolds

The method can be applied to products of Grassmannians
and general flag manifolds.

Flag manifold F(k1, k2, · · · , kn,N) can be described by
quiver GLSM:

k1 k2
Φ12oo · · ·Φ23oo kn

Φn−1,noo N
Φn,n+1oo

(0,2) deformation:

D+Λs,s+1 = Φs,s+1Σ(s) − Σ(s+1)Φs,s+1 +

n∑
t=1

us
t (TrΣ(t))Φs,s+1,

s = 1, · · · , n− 1

D+Λi
n,n+1 = Φn,n+1Σ(n) +

n∑
t=1

(TrΣ(t))At
i
jΦ

j
n,n+1, i, j = 1, · · · ,N.
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Flag manifolds

A flag of universal subbundles:

0 = S0 ↪→ S1 ↪→ S2 ↪→ · · · ↪→ Sn ↪→ Sn+1 = O⊕N .

QSC A/(I + R): A is the polynomial ring in x(m)
i with

m = 1, · · · , n + 1, i = 1, 2, · · · .
On the (2,2) locus, x(m)

i is the i-th Chern class of Sm/Sm−1.
I is generated by homogeneous components of

n+1∏
m=1

( ∞∑
i=0

x(m)
i

)
= 1.

R is generated by
{x(1)

i1 , R̃
(s)
is (u,A, q) | i1 > k1, is > ks − ks−1, s = 2, · · · , n + 1}.

R̃(s)
r (u,A, q)→ x(s)

r as u,A, q→ 0.
It can be shown that QSC reduces to QC as u,A→ 0.
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Dual deformation

Biholomorphic duality:
F(k1, k2, · · · , kn,N)↔ F(N − kn,N − kn−1, · · · ,N − k1,N).

Si ↔ (O⊕N/Sn+1−i)
∨.

Question: Given (0,2) deformation (us
t ,At

i
j) on

F(k1, k2, · · · , kn,N), what is the corresponding deformation
(u′st ,A

′
t
i
j) inducing the same deformed tangent bundle on

F(N − kn,N − kn−1, · · · ,N − k1,N) ?
Answer: (u′st ,A

′
t
i
j) can be solved by QSC. (The rings on the

two sides are isomorphic.)
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Dual deformation of Grassmannian

Classical sheaf cohomology:

AG(k,N) = C[x1, x2, · · · , y1, y2, · · · ]/(I + R) = C[x1, x2, · · · ]/R,

where R is generated by {xi,Rj | i > k, j > N − k},
RN−k+r =

∑min{N,N−k+r}
i=0 Ii(y1A)yN−k+r−i,

ym = (−1)m det(x1+j−i)1≤i,j≤m.

The dual cohomology: AG(N−k,N) = C[x′1, x
′
2, · · · ]/R′, R′ is

generated by {x′i,R′j | i > N − k, j > k}.
If the two rings are isomorphic, then xi 7→ R′i ⇒ Ri 7→ x′i.
This correspondence implies Ii(y1A) = Ii(y′1A′).
y′1A′ = y1A up to linear transformation of CN , which does
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Dual deformation of products of Grassmannians

The same method can be used to deduce the dual
deformation on product of Grassmannians
G(k1,N1)× G(k2,N2).

(0,2) deformation on G(k1,N1)× G(k2,N2) is specified by
four matrices A,B,C,D:

D+Λ1
i1
a = Φ1

i1
b Σ1

b
a + (Σ1

b
bAi1

j1 + Σ2
β
βBi1

j1)Φ1
j1
a ,

D+Λ2
i2
α = Φ2

i2
βΣ2

β
α + (Σ1

b
bCi2

j2 + Σ2
β
βDi2

j2)Φ2
j2
α.

If the dual deformation on G(N1 − k1,N1)×G(N2 − k2,N2) is
given by matrices A′,B′,C′,D′, then

(
A′ B′

C′ D′

)
=

1
m

(
A B
C D

)(
−1− Tr(D) Tr(B)

Tr(C) −1− Tr(A)

)
,

where m = (1 + Tr(A))(1 + Tr(D))− Tr(B)Tr(C).
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Dual deformation of flag manifolds

Consider the embedding
F(k1, k2, · · · , kn,N) ↪→ G(k1,N)× · · · × G(kn,N).

Let E (given by At, ua
t ) and Ẽ (given by N × N matrices Bst)

be deformed tangent bundles on F(k1, k2, · · · , kn,N) and
G(k1,N)× · · · × G(kn,N) respectively.
Ẽ/E = N (the undeformed normal bundle).
Then the deformations are related by

Bst = At +

n−1∑
a=s

ua
t I, s ≤ n− 1,

Bnt = At.
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Dual deformation of flag manifolds

Using the results on product of Grassmannians (with dual
embedding F(N − kn,N − kn−1, · · · ,N − k1,N) ↪→
G(N − kn,N)× · · · × G(N − k1,N)), one can show the dual
deformation on F(N − kn,N − kn−1, · · · ,N − k1,N) is given
by X′ = XT−1, where Tij = δij + Tr

(
Aj +

∑n−1
t=i ut

jI
)

,

X1t = −At −
n−1∑
l=1

ul
tI,

Xst = us−1
t , s = 2, · · · , n,

and

X′1t = A′n+1−t,

X′st = u′n−s+1
n−t+1 , s = 2, · · · , n.
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Conclusion and Outlook

Conclusion:
Quantum sheaf cohomology (A/2 ring) of (0,2) nonabelian
GLSM can be computed by localization and effective
potential on the Coulomb branch.

QSC of deformed tangent bundle on flag manifolds can be
computed by (0,2) GLSMs.
QSC can be used to deduce the dual deformation under
biholomorphic duality, which gives rise to IR duality
between A/2-twisted (0,2) gauge theories.

Outlook:

Other (0,2) nonabelian GLSMs.
Theories with superpotential.
Theories without (2,2) locus.
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