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m For a holomorphic vector bundle £ over X, one can define
quantum sheaf cohomology (QSC), which is computed by
A/2 twsited correlation functions of the corresponding (0,2)
theory. [Katz, Sharpe 04

m QSC is a finite-dimensional truncation of the chiral ring,
topological at least in a neighborhood of the (2,2) locus.
[Adams, Distler, Ernebjerg, 05’]

m The underlying vector space is B, , H” (X, NEY).

m QSC reduces to quantum cohomology when £ = TX.((2,2)
locus)

m Ring structures have been solved for toric varieties [McOrist,
Melnikov, 07'] [Donagi, Guffin, Katz, Sharpe, 11’], Grassmannians [JG, Lu,
Sharpe, 15" and flag manifolds [JG 187.



Outline

Pseudo-topological twist



Outline

Pseudo-topological twist

Quantum sheaf cohomology of (0,2) GLSMs with (2,2) locus



Outline

Pseudo-topological twist
Quantum sheaf cohomology of (0,2) GLSMs with (2,2) locus

Flag manifolds



Outline

Pseudo-topological twist
Quantum sheaf cohomology of (0,2) GLSMs with (2,2) locus
Flag manifolds

Dual deformation of flag manifolds



Outline

Pseudo-topological twist

Quantum sheaf cohomology of (0,2) GLSMs with (2,2) locus
Flag manifolds

Dual deformation of flag manifolds

Conclusion and outlook



Outline

Pseudo-topological twist



Pseudo-Topological Twist of 2d (0,2) Theries




Pseudo-Topological Twist of 2d (0,2) Theries

m J; g Left/Right U(1)g symmetry. Jy = J + Jg, Ja = Jp — Jg-



Pseudo-Topological Twist of 2d (0,2) Theries

m J; g Left/Right U(1)g symmetry. Jy = J + Jg, Ja = Jp — Jg-

m Twist replaces the group U(1), of worldsheet rotations with
the diagonal subgroup of U(1), x U(1)y (A/2 twist) or
U(1), x U(1)4 (B/2 twist).



Pseudo-Topological Twist of 2d (0,2) Theries

m J; g Left/Right U(1)g symmetry. Jy = J + Jg, Ja = Jp — Jg-

m Twist replaces the group U(1), of worldsheet rotations with
the diagonal subgroup of U(1), x U(1)y (A/2 twist) or
U(1), x U(1)4 (B/2 twist).

m They reduce to A model and B model in the (2,2) case.



Pseudo-Topological Twist of 2d (0,2) Theries

m J;r: Left/Right U(1)g symmetry. Jy = Jp + Jg, Ja = Jp — Jg.

m Twist replaces the group U(1), of worldsheet rotations with
the diagonal subgroup of U(1), x U(1)y (A/2 twist) or
U(1), x U(1)4 (B/2 twist).

m They reduce to A model and B model in the (2,2) case.

m Not a topological theory, but chiral ring contains a
topological subsector (RR ground states) in a
neighborhood of (2,2) locus.



Pseudo-Topological Twist of 2d (0,2) Theries

m J; g Left/Right U(1)g symmetry. Jy = J + Jg, Ja = Jp — Jg-

m Twist replaces the group U(1), of worldsheet rotations with
the diagonal subgroup of U(1), x U(1)y (A/2 twist) or
U(1), x U(1)4 (B/2 twist).

m They reduce to A model and B model in the (2,2) case.

m Not a topological theory, but chiral ring contains a
topological subsector (RR ground states) in a
neighborhood of (2,2) locus.

m In the A/2 model, ch,(€) = chy(TX), detEY = Ky, the states
are counted by H*(X, A°EY).



Pseudo-Topological Twist of 2d (0,2) Theries

m J; g Left/Right U(1)g symmetry. Jy = J + Jg, Ja = Jp — Jg-

m Twist replaces the group U(1), of worldsheet rotations with
the diagonal subgroup of U(1), x U(1)y (A/2 twist) or
U(1), x U(1)4 (B/2 twist).

m They reduce to A model and B model in the (2,2) case.

m Not a topological theory, but chiral ring contains a
topological subsector (RR ground states) in a
neighborhood of (2,2) locus.

m In the A/2 model, ch,(€) = chy(TX), detEY = Ky, the states
are counted by H*(X, A°EY).

m OPE — Quantum Sheaf Cohomology
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of A, I and R. (A and I are independent of the (0,2)
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m We consider theories without J-terms, therefore the
R-charge of the chiral multiplets can be taken zero.

m The E-terms are given by

D A" = E(X,®) Coulomb branch E; = 0,E%(¢).
+ i

m Mass matrix: M;; = g%{ o’

m An operator Oy is zero in the quantum sheaf cohomology if
and only if the A/2 correlation function (OrO) = 0 for any
operator O.
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m In the classical limit, localization on Coulomb branch
[Closset, Gu, Jia, Sharpe, 15’ implies

A20R0O
0
( )H7 I1, ex, (det(M(,,,)))

A =T],s0a(0). a : positive roots of the gauge group.

m A*. Og must lie in the ideal generated by det(M(, , ) with
v and p,, running over all the representations and weights
of the matter multiplets.

m If on the (2,2) locus the quantum cohomology has a
representation .A/(I + R), then there is a set of generators
h, of R such that for each r, A’h, is a function of
det(M(%pv)),i.e.

Res

doy /\'-'/\dO'rk(G) =0

Azhr = Pr(det(M('y,p,},)))-
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QSC of (0,2) GLSMs with (2,2) locus

m When there is (0,2) deformation (M., , ) — M a set

of generators A, of R can be found from

%pw))’

Azilr = Pr(det(M(%pW) ) ) .

m Quantum corrections are encoded in the effective J-terms
on the Coulomb branch:

27”2 Z ,owlog det W)W Za

Y pyERy a>0

m Quantum relations: J* = 0 = h,(q) = 0.
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m G(k,N): U(k) gauge theory with N chiral multiplets in the
fundamental representation.

m Chiral multiplets: ® , Fermi multiplets: A/,
a=1,--- k,i=1,--- n

m D A = ng)iﬁ + A}(Tra)q)’;.

m Left moving fermions couple to the vector bundle £ defined
by

05828 5Ves =& 0.

Hg: wg — ng"ﬁ + ngj‘:xia.

m oy, , 0k coordinates on the Coulomb branch
Residual Weyl group = Gauge invariant operator =
Symmetric polynomial in o;

Basis: Schur Polynomials in o;.
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Grassmannians

u H.(G(kaN)aC) = (C[X],Xz, V1 Y2, ]/(I +R>’
R is generated by {x;,y; | i > k,j > N — k},
I is generated by {Zi+j:mx,-yj | m > 0}. (x; and y; are
Chern classes of tautological bundle S and universal
quotient bundle Q. )

m Diagonal elements of o: Chern roots of SV.

m x; = (—1)iS(1i)(01, <o ,Uk), yj = S@(O’], R ,Uk).

m With deformation given by D A, = S4%, + A{(Tr3) @, the
generators of R: .
YN—k+r —> RN—ftr = E?EE{N’N_"”} Li(V1A)YN—ktr—i-

(;: i-th characteristic polynomial)

m quantum: Ry i, + qy,—x = 0.
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m The method can be applied to products of Grassmannians
and general flag manifolds.

m Flag manifold F(ky,k,,- - ,k,, N) can be described by
quiver GLSM:

<I>12 ‘1>23 q)nfl,n q>n,n+1
@@yt @

m (0,2) deformation:

n
B+As,s+l = q)s,s+lz(s) - Z](S—i_l)q)s,s—l—l + Z uf (Trz(t))q)s,s-l—h
=1

DA,y =0 B0+ (XA L ij=1,-+ N

t=1
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m A flag of universal subbundles:
0=8S) =S =S8 Sy = O,

m QSC A/(I + R): A is the polynomial ring in xl(’") with
m=1,-- n+1,i=12,---.

m On the (2,2) locus, x,(’") is the i-th Chern class of S,,/Sy—1.

m ] is generated by homogeneous components of

n+1 0o
I (S -
m=1 \i=0
m R is generated by

(Y RO, A, q) iy > ki > kg —kyotys =2, ,n+ 1}

0
] kﬁs)(u,A, q) — % as u,A,q — 0.

m It can be shown that QSC reduces to QC as u,A — 0.
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m Biholomorphic duality:
F(k17k27 T 7kmN) A F(N_kn7N_ knfla e 7N_ kl7N)'

mS & (O®N/Sn+1_i)v.

m Question: Given (0,2) deformation (uf,A,J’:) on
F(ki,ky,--- ,kq,N), what is the corresponding deformation
(u'y, Aj;) inducing the same deformed tangent bundle on
F(N —ky,N —kp_1,--- ,N —ki,N) ?

m Answer: (i}, Aj}) can be solved by QSC. (The rings on the
two sides are isomorphic.)
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Dual deformation of Grassmannian

m Classical sheaf cohomology:
Acny = Clxr,xa, -+ 31,92, -]/ (I + R) = Clxy, x2, -+ |/R,
where R is generated by {x;,R; | i > k,j > N — k},
Ry —k4r = Emm{NN S LAY Nk
ym = (=1)" det(xl+j—t)1§t,1§m-
m The dual cohomology Aciv—in) = Clx}, x5, ---]/R, R is

generated by {x,R} [i > N —k,j > k}.



Dual deformation of Grassmannian

m Classical sheaf cohomology:
Acny = Clxr,xa, -+ 31,92, -]/ (I + R) = Clxy, x2, -+ |/R,
where R is generated by {x;,R; | i > k,j > N — k},
Ry_jir = Emm{NN S LA Nk
Ym = (=1)" det(x14j-i)1<ij<m-

m The dual cohomology Aciv—in) = Clx}, x5, ---]/R, R is
generated by {x,R} [i > N —k,j > k}.

m If the two rings are isomorphic, then x; — R} = R; — x].



Dual deformation of Grassmannian

m Classical sheaf cohomology:
Acny = Clxr,xa, -+ 31,92, -]/ (I + R) = Clxy, x2, -+ |/R,
where R is generated by {x;,R; | i > k,j > N — k},
RN_jtr = me{NN S LA Nk
Ym = (=1)" det(x14j-i)1<ij<m-

m The dual cohomology Aciv—in) = Clx}, x5, ---]/R, R is
generated by {x,R} [i > N —k,j > k}.

m If the two rings are isomorphic, then x; — R} = R; — x].
m This correspondence implies 7;(y1A) = L;(y}A’).



Dual deformation of Grassmannian

m Classical sheaf cohomology:

Acny = Clxr,xa, -+ 31,92, -]/ (I + R) = Clxy, x2, -+ |/R,
where R is generated by {x;,R; | i > k,j > N — k},

Ry iy = Emm{NN S LA Nk
Ym = (=1)" det(x14j-i)1<ij<m-
m The dual cohomology Aciv—in) = Clx}, x5, ---]/R, R is
generated by {x,R} [i > N —k,j > k}.
m If the two rings are isomorphic, then x; — R} = R; — x].
m This correspondence implies 7;(y1A) = L;(y}A’).
m )}A’ = y,A up to linear transformation of CV, which does
not affect ring structure.



Dual deformation of Grassmannian

m Classical sheaf cohomology:

Acny = Clxr,xa, -+ 31,92, -]/ (I + R) = Clxy, x2, -+ |/R,
where R is generated by {x;,R; | i > k,j > N — k},

Ry iy = Emm{NN S LA Nk
Ym = (=1)" det(x14j-i)1<ij<m-
m The dual cohomology Aciv—in) = Clx}, x5, ---]/R, R is
generated by {x,R} [i > N —k,j > k}.
m If the two rings are isomorphic, then x; — R} = R; — x].
m This correspondence implies 7;(y1A) = L;(y}A’).
m )}A’ = y,A up to linear transformation of CV, which does
not affect ring structure.

Wy =-—x =R =1 —y] = —yTrA — y/.



Dual deformation of Grassmannian

m Classical sheaf cohomology:

Acny = Clxr,xa, -+ 31,92, -]/ (I + R) = Clxy, x2, -+ |/R,
where R is generated by {x;,R; | i > k,j > N — k},

Ry iy = Emm{NN S LA Nk
Ym = (=1)" det(x14j-i)1<ij<m-
m The dual cohomology Aciv—in) = Clx}, x5, ---]/R, R is
generated by {x,R} [i > N —k,j > k}.
m If the two rings are isomorphic, then x; — R} = R; — x].
m This correspondence implies 7;(y1A) = L;(y}A’).
m )}A’ = y,A up to linear transformation of CV, which does
not affect ring structure.
Wy =-—x =R =1 —y] = —yTrA — y/.

. o _ A
m The two identities above show that A" = — =51




Dual deformation of Grassmannian
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m This correspondence implies 7;(y1A) = L;(y}A’).

m )}A’ = y,A up to linear transformation of CV, which does
not affect ring structure.

Wy =-—x =R =1 —y] = —yTrA — y/.

m The two identities above show that A’ = — ;.

m Quantum corrections do not change this relation as long as

qg=4q.
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Dual deformation of products of Grassmannians

m The same method can be used to deduce the dual
deformation on product of Grassmannians
G(kl,Nl) X G(kz,Nz).

m (0,2) deformation on G(k;,N;) x G(ka,N,) is specified by
four matrices A, B, C, D:

54_[\12 = @12212 (2121411 + 225311)@1
D+A212 = q)zﬁzza (Ele’Z + ZzﬁDlz)q)

m If the dual deformation on G(N| — ki, N1) x G(N2 — ka2, N») is
given by matrices A’, B, C’, D/, then

(E5)-a(25) (a8 )

where m = (1 + Tr(A))(1 + Tr(D)) — Te(B)Tr(C).
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Dual deformation of flag manifolds

m Consider the embedding
F(k],kz, s ,kn,N) — G(k],N) X -+ X G(kn,N).

m Let £ (given by A, u¢) and £ (given by N x N matrices By;)
be deformed tangent bundles on F(ky, ky,--- ,k,,N) and
G(ki,N) x --- x G(k,,N) respectively.

m £/ = N (the undeformed normal bundle).

m Then the deformations are related by

n—1
Bst:At—i_Zu?Ia s<n-—1,

a=s

Bnt - At‘



Dual deformation of flag manifolds

m Using the results on product of Grassmannians (with dual
embedding F(N — ky, N — ky—1,--- ,N —k;,N) —
G(N — ky,N) x --- x G(N — k1, N)), one can show the dual
deformation on F(N — ky,N — ky—1,--- ,N — ki, N) is given
by X' = XT~!, where Ty; = d + Tr (4; + 15 wll),

n—1
Xy =—A =Y ul,
=1

X :uf_l, §s=2,---,n,
and
Xit :A;H-l—ta
X, = u:l"_;f:rll, s=2,---,n.
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Conclusion:

m Quantum sheaf cohomology (A/2 ring) of (0,2) nonabelian
GLSM can be computed by localization and effective
potential on the Coulomb branch.

m QSC of deformed tangent bundle on flag manifolds can be
computed by (0,2) GLSMs.

m QSC can be used to deduce the dual deformation under
biholomorphic duality, which gives rise to IR duality
between A/2-twisted (0,2) gauge theories.

Outlook:
m Other (0,2) nonabelian GLSMs.
m Theories with superpotential.
m Theories without (2,2) locus.
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