# GLSMs, localisation, and the stringy Kähler moduli space

[with M. Romo, E. Scheidegger: arXiv:2003.00182[hep-th]] [with D. Erkinger: arXiv:2008.03089[hep-th]]

#### Johanna Knapp

School of Mathematics and Statistics, University of Melbourne

#### GLSMs 2020, Online, 20 August 2020



### Outline

#### Overview

#### GLSMs and localisation

#### Hemisphere

#### Sphere

Conclusions



GLSMs and localisation

Hemisphere 00000000 Sphere 0000 Conclusions

# Stringy Kähler moduli space $\mathcal{M}_K$

- This talk: Calabi-Yau threefolds in a type II setting (+ branes)
- $\mathcal{M}_{\mathcal{K}}$  is divided into chambers



- Quantum corrections due to worldsheet instantons.
- One can cross the chamber boundaries.
- Categories associated to chambers (conjecturally) equivalent.
- Study  $\mathcal{M}_{\mathcal{K}}$  in limiting regions that are not large volume.

GLSMs and localisation

Hemisphere

Sphere 0000 Conclusions 00

# $\mathcal{M}_{\mathcal{K}}$ via GLSMs

- The 2D (2,2) gauged linear sigma model (GLSM) provides a common UV description of the CFTs in  $M_K$ . [Witten 93]
- Phases: different low-energy (IR) configurations depending on the values of the FI-theta parameters:

$$t = \zeta - i\theta \quad \leftrightarrow \quad t \in \mathcal{M}_{\mathcal{K}} \quad \leftrightarrow \quad \text{chambers}$$

- Use the GLSM to map out  $\mathcal{M}_{\mathcal{K}}$ .
- SUSY localisation computes (quantum) exact expressions.
  - Can be evaluated in any phase.
  - *t*-dependence  $\leftrightarrow$  worldsheet instanton corrections.
  - Compute quantum corrections directly in the GLSM.

GLSMs and localisation

Hemisphere

Sphere 0000 Conclusions 00

# Beyond geometry

- Geometric phases are well-understood and we know how to do computations.
  - Toric geometry, topological strings, mirror symmetry, enumerative invariants, etc.
- The structures we know in geometry should also be visible in non-geometric settings. Why?
  - The worldsheet CFT of the phases does not care whether there is a geometry.
  - Whatever is computed in non-geometric phases using localisation has the same UV origin as the geometric results.
- If we evaluate localisation results in phases of the GLSM, how do we interpret the result in the IR theory?

## Universal structures in phases of GLSMs

- Claim: When evaluating the GLSM partition functions in different types of phases the (exact) result has the same structure in every phase.
- To see this, we need structures that are available beyond geometric settings, e.g.
  - Worldsheet: CFT, topological gravity, tt\*-geometry
  - FJRW theory
  - Givental's mirror construction
  - Categories
- Ingredients that appear in every phase:
  - State space and pairing
  - I/J-function
  - Gamma class
  - D-brane data

[Witten 92] [Fan-Jarvis-Ruan 07]

[Givental 96-03]

[Hosono 00][Iritani 07][Katzarkov-Kontsevich-Pantev 08]



• Hemisphere partition function:

[Romo-Scheidegger-JK 20]

$$Z_{D^2}^{phases}(\mathcal{B}) = \langle \mathrm{ch}(\mathcal{B}), \Gamma \cdot I \rangle$$

• Works in geometry and Landau-Ginzburg orbifold phases.

• Sphere partition function:

[Erkinger-JK 20]

$$Z_{S^2}^{phases} = \langle \bar{I}, I \rangle, \qquad \langle \bar{I} | = (-1)^{\text{Gr}} \frac{\Gamma}{\Gamma^*} \bar{I}$$

 Works in hybrid phases that are LG orbifolds fibered over some base manifold.

GLSMs and localisation

Hemisphere

Sphere 0000 Conclusions

### GLSM data

- G ... a compact Lie group (gauge group)
- V ... space of chiral fields  $\phi_i \in V$
- $\rho_V$  :  $G \rightarrow GL(V)$  ... faithful complex representation
  - CY condition:  $G \rightarrow SL(V)$
- $R: U(1)_V \to GL(V) \dots$  vector R-symmetry
  - *R<sub>i</sub>* ... R-charges
- $T \subset G$  ... maximal torus
  - Lie algebras:  $\mathfrak{g} = Lie(G)$ ,  $\mathfrak{t} = Lie(T)$
  - Q<sup>a</sup><sub>i</sub> ∈ t<sup>\*</sup><sub>C</sub> ... gauge charges of chiral fields

GLSMs and localisation

Hemisphere

Sphere 0000 Conclusions 00

# GLSM Data (ctd.)

- $t^a \in \mathfrak{g}^*_{\mathbb{C}} \ldots$  Fl-theta parameters
  - $t^a = \zeta^a i\theta^a$   $\zeta^a$ : real,  $\theta^a$ :  $2\pi$ -periodic
  - $t^a \leftrightarrow K$ ähler moduli of the CY
- $\sigma_{\mathsf{a}} \in \mathfrak{g}_{\mathbb{C}} \ldots$  scalar components of the vector multiplet
- $W \in \operatorname{Sym} V^* \dots$  superpotential
  - G-invariant
  - *R*-charge 2
  - non-zero for compact CYs

GLSMs and localisation

Hemisphere

Sphere 0000 Conclusions

### D-branes in GLSMs

• D-branes (B-type) in the GLSM are *G*-invariant matrix factorisations of the GLSM potential with *R*-charge 1

[Herbst-Hori-Page 08][Honda-Okuda,Hori-Romo 13]

- Data:
  - Sym  $V^*$ -module (Chan-Paton space):  $M = M^0 \oplus M^1$
  - Matrix Factorisation:  $Q \in End^1(M)$  with

$$Q^2 = W \cdot \mathrm{id}_M$$

• G-action:  $\rho: G \rightarrow GL(M)$  with

$$ho(g)^{-1}Q(g\phi)
ho(g)=Q(\phi)\qquad g\in G$$

• R-action:  $r_*: u(1)_V \to gl(M)$  with

$$\lambda^{\mathbf{r}_*} Q(\lambda^R \phi) \lambda^{-\mathbf{r}_*} = \lambda Q(\phi) \qquad \lambda \in U(1)_V$$

GLSMs and localisation

Hemisphere 00000000 Sphere 0000 Conclusions 00

# Sphere partition function $Z_{S^2}$

• Sphere partition function

[Benini-Cremonesi 12][Doroud-Gomis-LeFloch-Lee 12]

$$Z_{S^2} = C \sum_{m \in \mathbb{Z}^{\mathrm{rk}G}} \int_{\gamma} d^{\mathrm{rk}G} \sigma \prod_{\alpha > 0} \left( \frac{\alpha(m)^2}{4} + \alpha(\sigma)^2 \right)$$
  
 
$$\cdot \prod_{j=1}^{\dim V} \frac{\Gamma\left(iQ_j(\sigma) - \frac{Q_j(m)}{2} + \frac{R_j}{2}\right)}{\Gamma\left(1 - iQ_j(\sigma) + \frac{Q_j(m)}{2} - \frac{R_j}{2}\right)} e^{-4\pi i \zeta(\sigma) - i\theta(m)}$$

- *α* > 0 positive roots
- $\gamma$  ... integration contour (s.t. integral is convergent)
- $Z_{S^2}$  computes the exact Kähler potential on  $\mathcal{M}_{\mathcal{K}}$ .

[Jockers-Kumar-Lapan-Morrison-Romo 12][Gomis-Lee 12]

[Gerchkovitz-Gomis-Komargodski 14][Gomis-Hsin-Komargodski-Schwimmer-Seiberg-Theisen 15]

GLSMs and localisation

Hemisphere 00000000 Sphere 0000 Conclusions 00

### Hemisphere partition function

Hemisphere partition function: [Sugishita-Terashima][Honda-Okuda][Hori-Romo 13]

$$Z_{D^{2}}(\mathcal{B}) = C \int_{\gamma} d^{\mathrm{rk}_{G}} \sigma \prod_{\alpha > 0} \alpha(\sigma) \sinh(\pi \alpha(\sigma))$$
  
 
$$\cdot \prod_{j=1}^{\dim V} \Gamma\left(iQ_{j}(\sigma) + \frac{R_{j}}{2}\right) e^{it(\sigma)} f_{\mathcal{B}}(\sigma)$$

Brane factor

$$f_{\mathcal{B}}(\sigma) = \operatorname{tr}_{M}\left(e^{i\pi\mathbf{r}_{*}}e^{2\pi\rho(\sigma)}\right)$$

•  $Z_{D^2}$  computes the exact D-brane central charge.



D-brane central charge – worldsheet perspective

• The central charge connects A/B-branes with (c, c)/(a, c)-operators: [Ooguri-Oz-Yin 96][Hori-Iqbal-Vafa 00]

$$Z(B) = \langle B | \mathbf{0} \rangle$$



- Here we consider B-branes  $\mathcal{B}$  and (a, c)-operators.
  - Note: "B-branes in the A-model"

GLSMs and localisation

Hemisphere

Sphere 0000 Conclusions

# $Z_{D^2}$ in LG orbifold phases

• We want to collect evidence that

[Romo-Scheidegger-JK 20]

$$Z_{D^2}^{phases}(\mathcal{B}) = \langle \operatorname{ch}(\mathcal{B}), \Gamma \cdot I \rangle.$$

#### • $\langle \cdot, \cdot \rangle$ . . . pairing (state space)

- Γ . . . Gamma class
- I . . . I-function
- ch(B) . . . Chern character
- Focus on Landau-Ginzburg orbifold phases.
- Plan:
  - Define the objects on the right-hand side for LG orbifolds.
  - Show that the results match with  $Z_{D^2}$  and FJRW theory.



GLSMs and localisation

Hemisphere

Sphere 0000 Conclusions 00

# LG data

• Landau-Ginzburg orbifold:  $(W, G, \overline{\rho}_m, U(1)_{L/R})$ 

[Vafa 89][Intriligator-Vafa 90]

- $W(x_i)$  ... superpotential
- G ... orbifold group (assume  $\mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times ...$ )
- *ρ*<sub>m</sub> . . . matter representation
- $U(1)_{L/R}$  ... left/right R-symmetry
- State space
  - (c, c), (a, c), ...- chiral rings ↔ γ-twisted sectors (γ ∈ G) with basis elements φ<sub>γ</sub>
  - Restriction to one-dimensional ("narrow") sectors ( $\delta \in G$ )
  - (Topological) pairing on the (a, c)-ring:

$$\langle \phi_{\delta}, \phi_{\delta'} 
angle = rac{1}{|G|} \delta_{\delta, \delta'^{-1}}$$

• Note: Spectral flow required to map (c, c) to (a, c).

| 0 | verview |  |
|---|---------|--|
| 0 | 0000    |  |

GLSMs and localisation

Hemisphere

Sphere 0000 Conclusions

# LG branes

• LG orbifold B-brane:  $\overline{\mathcal{B}} = (\overline{M}, \overline{Q}, \overline{\rho}_{\gamma}, \overline{r}_{*})$ 

[Kapustin-Li 02][Brunner-Herbst-Lerche-Scheuner 03][Walcher 04]

- M...Chan-Paton space
- $\overline{Q}$ ...matrix factorisation of W
- $\overline{
  ho}_{\gamma}, \overline{r}_{*}...$  representation of G and  $u(1)_V$  on the boundary
- Chern character:

$$\operatorname{ch}(\overline{\mathcal{B}})_{\gamma} = \frac{1}{n_{\gamma}!} \operatorname{Res}_{W_{\gamma}} \left( \Phi_{\gamma} \cdot \operatorname{Tr}_{\overline{M}} \left[ \overline{\rho}_{\gamma} (\partial \overline{Q}_{\gamma})^{\wedge n_{\gamma}} \right] \right)$$

- Φ<sub>γ</sub>...state(s) in the γ-twisted sector H<sub>γ</sub> (to be precise, this is the (c, c)-ring)
- $n_{\gamma} \ldots \operatorname{dimFix}_{\gamma}$
- $W_{\gamma} = W|_{\mathrm{Fix}_{\gamma}}$



### Gamma class

- Taking into account deformations away from the LG point, one can define a  $h \times (N + h)$  matrix q.
  - *N* . . . number of chirals *x<sub>i</sub>*.
  - *h* ... number of marginal deformations (narrow sectors).
- Gamma class:

$$\Gamma \phi_{\delta} = \Gamma_{\delta} \phi_{\delta} \qquad \Gamma_{\delta} = \prod_{j=1}^{N} \Gamma \left( 1 - \left\langle \sum_{a=1}^{h} k_a q_{a,h+j} \right\rangle \right).$$

k<sub>a</sub> ∈ Z<sup>h</sup><sub>≥0</sub>: each gets associated to a sector δ.
 ⟨x⟩ = x - ⌊x⌋

GLSMs and localisation

Hemisphere

Sphere 0000 Conclusions 00

### *I*-function

#### • *I*-function

$$\begin{split} I_{LG}(u) &= \sum_{\delta \in G} I_{\delta}(u) \phi_{\delta} \\ I_{\delta}(u) &= -\sum_{\substack{k_1, \dots, k_h \geq 0 \\ k'_i = \delta_i \mod d_i}} \frac{u^k}{\prod_{a=1}^h \Gamma(k_a + 1)} \\ &\times \prod_{j=1}^N \frac{(-1)^{\langle -\sum_{a=1}^h k_a q_{a,h+j} + q_j \rangle} \Gamma(\langle \sum_{a=1}^h k_a q_{a,h+j} - q_j \rangle)}{\Gamma(1 + \sum_{a=1}^h k_a q_{a,h+j} - q_j)} \end{split}$$

- *u* ... local coordinates/deformation parameters
- $q_j \ldots$  left R-charges of the  $x_j$



GLSMs and localisation

Hemisphere

Sphere 0000 Conclusions

# J-function

- One obtains the *J*-function from the *I*-function through a transformation to flat coordinates.
  - These correspond to the deformation parameters of the marginal deformations in the worldsheet CFT.
- Select components of the *I*<sub>δ<sub>a</sub></sub> (*a* = 1,..., *h*) of the *I*-function associated to the subspace of (narrow) marginal deformations ↔ (*a*, *c*) states with (*q*, *q*) = (-1, 1) and the unique component *I*<sub>0</sub> with (*q*, *q*) = (0, 0).
- The flat coordinates and the J-function are

$$t_a(u) = rac{l_{\delta_a}(u)}{l_0(u)}$$
  $J(t) = rac{l_{LG}(u(t))}{l_0(u(t))}$ 

• This coincides with the mirror map.



GLSMs and localisation

Conclusions 00

# Consistency checks

• The LG quantities consistent with FJRW theory.

[Chiodo-Ruan 08][Chiodo-Iritani-Ruan 12]

- This gives an independent check for our results.
- Our results generalise results from FJRW theory: more moduli, more general *G*.
- The hemisphere partition function of the GLSM reproduces the results from the central charge formula when evaluated at LG points.
  - GLSM gauge group broken to orbifold group G
  - Matrix q is related to the gauge charges of the GLSM fields
  - GLSM branes: matrix factorisations of the GLSM superpotential reduce to LG matrix factorisations

[Herbst-Hori-Page 08][Clarke-Guffin 10]

• Tested in examples with up to four Kähler moduli, including computation of FJRW invariants.



### Kähler potential – worldsheet perspective

• The Kähler potential of  $\mathcal{M}_{\mathcal{K}}$  is

[Cecotti-Vafa '91]

$$e^{-K(t,\overline{t})} = \langle \overline{0} | 0 \rangle$$



•  $\langle \overline{0} |$  and  $| 0 \rangle$  are related by CPT conjugation.



- Consider a GLSM phase that is a Landau-Ginzburg orbifold with orbifold group *G* fibered over some base manifold *B*.
- This includes:
  - Calabi-Yau complete intersections in toric ambient spaces
  - Landau-Ginzburg orbifolds
- The sphere partition function evaluates to

[Erkinger-JK 20]

$$Z_{S^2}^{phases}(t) = \sum_{\delta \in \mathcal{G}} \int_{\mathcal{B}} (-1)^{\mathrm{Gr}} \frac{\Gamma_{\delta}(\mathcal{H})}{\Gamma_{\delta}^*(\mathcal{H})} |I_{\delta}(t,\mathcal{H})|^2 = \langle \overline{I}, I \rangle$$

- $\delta \in G...$  narrow sectors
- Basis  $H \in H^2(B)$
- Gr...grading operator on the state space

GLSMs and localisation

Hemisphere

Sphere ○○●○ Conclusions 00

# $Z_{S^2}$ in phases

- Landau-Ginzburg phases:
  - *B* is a point (no *H*)
  - Definitions of I/J, Gr, pairing, and the Gamma class coincide with definitions above
- Geometric phases:
  - B is a complete intersection CY X, G is trivial
  - The pairing is  $\langle \alpha, \beta \rangle = \int_X \alpha^{\vee} \wedge \beta$ ,  $\alpha, \beta \in H^{even}(X)$ .
  - *I/J*, Gr, and Gamma class coincide with results in the literature
- Results suggest a definition

[Iritani 07][Halverson-Jockers-Lapan-Morrison 13]

$$\langle \overline{I} | = (-1)^{\mathrm{Gr}} \frac{\Gamma}{\Gamma^*} I(\overline{t}).$$

GLSMs and localisation

Hemisphere

Sphere ○○○● Conclusions 00

### Consistency checks

- Tested for GLSMs associated to 14 one-parameter complete intersections in toric ambient phases.
  - The small radius phases are Landau-Ginzburg, hybrids, and pseudo-hybrids. [Aspinwall-Plesser 09]
  - The structure is observed in all phases, even pseudo-hybrids, where we have a sum of terms.
  - *I*-functions and Gamma class in hybrid phases match with FJRW theory. [Clader 13]
- Two-parameter CY hypersurface with geometric, LG, and hybrid phase.
  - New conjectural results for the *I*-function and the Gamma class in multi-parameter hybrid models.

GLSMs and localisation

Hemisphere

Sphere 0000 Conclusions

# Summary

- We conjectured universal expressions for the hemisphere and sphere partition functions for phases of (abelian) GLSMs.
- Evidence that this works for geometric, Landau-Ginzburg and hybrid phases.
- Results match with mathematical results from FJRW theory and mirror symmetry, where available.
- Tested for lots of examples.

GLSMs and localisation

Hemisphere 00000000 Sphere 0000 Conclusions

### **Open Questions**

- Gamma class from the worldsheet perspective?
- Non-abelian GLSMs.
- Broad sectors.
- Hybrids, in particular with branes and enumerative invariants.
- More localisation results.
- Mathematical proofs.