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Windows

VGIT and windows — Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, . ..



Windows

VGIT and windows — Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, . ..

Fix a variety X, with a G-action.

G x X #ﬁ X (g, x) =x, o(g,x) =g.x
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Windows

VGIT and windows — Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, . ..
Fix a variety X, with a G-action.

G x X #ﬁ X (g, x) =x, o(g,x) =g.x

Construct a fully-faithful window functor

o : D(X/c) — D([X/G]).

The essential image Im & is called a window.
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Windows

VGIT and windows — Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, . ..

Fix a variety X, with a G-action.
G x X i; X (g, x) =x, o(g,x) =g.x
Construct a fully-faithful window functor

o : D(X/c) — D([X/G]).
The essential image Im & is called a window.

Compare the derived categories of different GIT quotients by comparing the windows.
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The Q-construction

How do we construct window functors?



The Q-construction

Q
. R
How do we construct window functors?

Ballard-Diemer-Favero('17): Construct an object Q G x XL.‘.7.r><0' X % X

Q — partial compactification
of the diagonal.

I Vi



The @-construction

How do we construct window functors?

Q
Ballard-Diemer-Favero('17): Construct an object Q \f l
“rxo
When G = G, = Spec k[u,u"!] and X = Spec T, BDF defines G x X r X x X.
Q= (n(T),o(T), u) C k[Gm x X] Q@ — partial compactification

of the diagonal.

Example: If X = A", Q= A! x X.
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The Q-construction for G,,-actions

Assume G, acts on X = Spec T. Then we consider two different GIT quotients X, and X_.



The Q-construction for G,,-actions

Assume G, acts on X = Spec T. Then we consider two different GIT quotients X, and X_.

Q is a sheaf on X x X, and by restriction to X1 x X, we get
QR+ = Qlx.xx in D(X& x [X/Gn)),

and thereby functors ®q, : D(X1) — D([X/Gn])
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The Q-construction for (G,,-actions

Assume G, acts on X = Spec T. Then we consider two different GIT quotients X, and X_.

Q is a sheaf on X x X, and by restriction to X1 x X, we get
QR+ = Qlx.xx in D(X& x [X/Gn)),
and thereby functors ®q, : D(X1) — D([X/Gn])

Theorem (Ballard-Diemer-Favero)
If G =G, and X is smooth and affine,

®q. : D(Xs) = D([X/Gm])

is fully faithful.

If the Calabi-Yau condition is satisfied, this provides an equivalence D(X,) = D(X_).
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Example
VGIT problem: X = SpecCl[x1, -, Xn, ¥1,***, ¥m] = C" x C™ with a C*-action such that

deg x; = +1, degy; = —1.



Example
VGIT problem: X = SpecCl[x1, -, Xn, ¥1,***, ¥m] = C" x C™ with a C*-action such that

deg x; = +1, degy; = —1.
We get the GIT quotients

Xi = [(X\ V(X)) /C7] = totp 1 O(=1)"7, Xo = [(X\ V(1)) /C"] = totpns O(~=1)*",
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Example
VGIT problem: X = SpecCl[x1, -, Xn, ¥1,***, ¥m] = C" x C™ with a C*-action such that

deg x; = +1, degy; = —1.
We get the GIT quotients
Xi = [(X\ V(X)) /C7] = totp 1 O(=1)"7, Xo = [(X\ V(1)) /C"] = totpns O(~=1)*",
and using the Q-construction we get windows

Im®g, = (O(-n+1),---,0(-1),0), Im®g = (0,0(1),---,0(m—1)),
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Example
VGIT problem: X = SpecCl[x1, -, Xn, ¥1,***, ¥m] = C" x C™ with a C*-action such that

deg x; = +1, degy; = —1.
We get the GIT quotients
Xi = [(X\ V(X)) /C7] = totp 1 O(=1)"7, Xo = [(X\ V(1)) /C"] = totpns O(~=1)*",
and using the @Q-construction we get windows
Im®g, = (O(-n+1),---,0(-1),0), Imdg. =(0,0Q),---,0(m—1)),
and a semi-orthogonal decomposition (assuming n > m)
D(Xy) = (D(k),---, D(k), D(X_))
n—m times
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Grassmann flip

Setup: X = Hom(V, W) x Hom(W’, V), where d := dim V < dim W/ < dim W.



Grassmann flip

Setup: X = Hom(V, W) x Hom(W’, V), where d := dim V < dim W/ < dim W.

X has a GL(V)-action
C.(A,B)=(C.AB.C™YH
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Grassmann flip

Setup: X = Hom(V, W) x Hom(W’, V), where d := dim V < dim W' < dim W.

X has a GL(V)-action

C.(A,B)=(C.AB.C™YH
Define the GIT quotients

X; = [(Hom(V, W)™ x Hom(W’, V)) /GL(V)] ,
X_ = [(Hom(V, W) x Hom(W’, V)*9) /GL(V)] .
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Grassmann flip

Setup: X = Hom(V, W) x Hom(W’, V), where d := dim V < dim W' < dim W.
X has a GL(V)-action

C.(A,B)=(C.AB.C™YH
Define the GIT quotients

X; = [(Hom(V, W)™ x Hom(W’, V)) /GL(V)] ,
X_ = [(Hom(V, W) x Hom(W’, V)*9) /GL(V)] .

We get isomorphisms

X4 = totgy(q,w) (S@d‘m W') , X_ 2 totggw) (S@d‘m W) .
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Generalized Q-construction

Let GL(V) = Spec k[C,det C~1]. Define

Q := (m(k[X]), o(K[X]), C) C k[X x G].



Generalized Q-construction

Let GL(V) = Spec k[C,det C~1]. Define

Q := (m(k[X]), o(K[X]), C) C k[X x G].

Then, Q is a partial compactification of the
diagonal

End(V) x X = Q

GL(V) x X — 7 X x X.
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Generalized Q-construction

Let GL(V) = Spec k[C, det C~1]. Define

Q = (w(k[X]), o(k[X]), C) C k[X x G]. En;:I(V)I X=Q
Then, Q is a partial compactification of the GL(V) x XL"” X0 X x X.
diagonal

Theorem (Ballard-C-Favero-McFaddin-Vandermolen)

Consider Q+ := Q|x, xx. Then the functors

®q, : D(Xx) = D(IX/GL(V)])

are fully-faithful, and the essential images are generated by Kapranov's collection.
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Equivalences for Grassmann flops

Recall Kapranov's collection Kg gimw on Gr(d, W) = [Hom(V, W)" /GL(V)]:

Ka.dimw = {Lx(V) | X is a Young diagram of height < dim W — d and width < d}
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Equivalences for Grassmann flops

Recall Kapranov's collection Kg gimw on Gr(d, W) = [Hom(V, W)" /GL(V)]:

Ka.dimw = {Lx(V) | X is a Young diagram of height < dim W — d and width < d}

Theorem (BCFMV)

Let j : X_ — [X/GL(V)] denote the inclusion. When dim W = dim W', the functor
J¥o®q, : D(Xy) = D(X_) is an equivalence.

Previous work by Buchweitz-Leuschke-van den Bergh ('11) and Donovan-Segal ('12).
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Equivalences for Grassmann flops

Recall Kapranov's collection Kg gimw on Gr(d, W) = [Hom(V, W)" /GL(V)]:

Ka.dimw = {Lx(V) | X is a Young diagram of height < dim W — d and width < d}

Theorem (BCFMV)

Let j : X_ — [X/GL(V)] denote the inclusion. When dim W = dim W', the functor
J¥o®q, : D(Xy) = D(X_) is an equivalence.

Previous work by Buchweitz-Leuschke-van den Bergh ('11) and Donovan-Segal ('12).

What about dim W # dim W'?
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SODs

Recall that X = Hom(V, W) x Hom(W’, V), with dim V < dim W’ < dim W.



SODs

Recall that X = Hom(V, W) x Hom(W’, V'), with dim V < dim W’ < dim W.
Theorem (BCFMV)

There is a semi-orthogonal decomposition
D(X5) = (Od.dimw-1, D(X-)),
where Oy dim w—1 IS supported on

[Hom(V, W)™ x {non-surjective maps}/GL(V)] C X4
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Orthogonal category Oy s

Let H be a vector space of dimension d — 1. Consider

h

~[Hom(V, W) x Hom(W’, H) x Hom(H, V) Hom(V, W)" x Hom(W', V)
' GL(H) x GL(V) ] - [ GL(V)
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Orthogonal category Oy s

Let H be a vector space of dimension d — 1. Consider

h

~[Hom(V, W) x Hom(W’, H) x Hom(H, V) Hom(V, W) x Hom(W’, V)
' GL(H) x GL(V) ] - [ GL(V)

Definition
The category Oy s is generated by

(h(Lagy))HY)" @ det V== for dim W' < i <s,

where A(/) runs over the set of Young diagrams of height i + 1 — d and width d — 1.
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Example

Let d =2, dim W’/ =3 and dim W = 4. Then we have

X+ = tOtGr(2’4) (8693) s X_ = tOtGr(273) (8694) .



Example

Let d =2, dim W’/ = 3 and dim W = 4. Then we have

Xy = totgaa) (),

D(X+):<O,D,| | IH

X_ = tOtGr(2’3) (8@4) .

> D(X_) = <oD|:|j>
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Example

Let d =2, dim W’/ = 3 and dim W = 4. Then we have

Xy = totgaa) (),

D(X+):<O,D,| | IH

The orthogonal O3 3 is

X_ = tOtGr(2’3) (5@4) .

> D(X_) = <oD|:|j>

r——
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Is there a geometric description of the orthogonal subcategory?



Is there a geometric description of the orthogonal subcategory?

Thank you!



