Grassmann flips and SODs

Nitin Chidambaram

Max Planck Institute for Mathematics

August 19, 2020

arXiv:1904.12195 [math.AG]
joint w/ Ballard, Favero, McFaddin, Vandermolen

Outline

- Variation of GIT quotients and windows
- Q-construction
- Grassmann flips
- Semi Orthogonal Decompositions

Windows

VGIT and windows - Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, ...

Windows

VGIT and windows - Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, ... Fix a variety X, with a G-action.

$$
G \times X \underset{\pi}{\underset{\sim}{\sigma}} X
$$

$$
\pi(g, x)=x, \sigma(g, x)=g \cdot x
$$

Windows

VGIT and windows - Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, ... Fix a variety X, with a G-action.

$$
G \times X \underset{\pi}{\underset{\leftrightarrows}{\sigma}} X
$$

$$
\pi(g, x)=x, \quad \sigma(g, x)=g \cdot x
$$

Construct a fully-faithful window functor

$$
\Phi: D(X / / G) \longrightarrow D([X / G])
$$

The essential image $\operatorname{Im} \Phi$ is called a window.

Windows

VGIT and windows - Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, ... Fix a variety X, with a G-action.

$$
G \times X \underset{\pi}{\underset{\leftrightarrows}{\sigma}} X
$$

$$
\pi(g, x)=x, \quad \sigma(g, x)=g \cdot x
$$

Construct a fully-faithful window functor

$$
\Phi: D(X / / G) \longrightarrow D([X / G])
$$

The essential image Im Φ is called a window.
Compare the derived categories of different GIT quotients by comparing the windows.

The Q-construction

How do we construct window functors?

The Q-construction

How do we construct window functors?
Ballard-Diemer-Favero('17): Construct an object Q

Q - partial compactification of the diagonal.

The Q-construction

How do we construct window functors?
Ballard-Diemer-Favero('17): Construct an object Q
When $G=\mathbb{G}_{m}=\operatorname{Spec} k\left[u, u^{-1}\right]$ and $X=\operatorname{Spec} T$, BDF defines

$$
Q:=\langle\pi(T), \sigma(T), u\rangle \subset k\left[\mathbb{G}_{m} \times X\right]
$$

Q - partial compactification of the diagonal.

Example: If $X=\mathbb{A}^{n}, \quad Q \cong \mathbb{A}^{1} \times X$.

The Q-construction for \mathbb{G}_{m}-actions

Assume \mathbb{G}_{m} acts on $X=\operatorname{Spec} T$. Then we consider two different GIT quotients X_{+}and X_{-}.

The Q-construction for \mathbb{G}_{m}-actions

Assume \mathbb{G}_{m} acts on $X=\operatorname{Spec} T$. Then we consider two different GIT quotients X_{+}and X_{-}. Q is a sheaf on $X \times X$, and by restriction to $X_{ \pm} \times X$, we get

$$
Q_{ \pm}:=\left.Q\right|_{X_{ \pm} \times X} \text { in } D\left(X_{ \pm} \times\left[X / \mathbb{G}_{m}\right]\right),
$$

and thereby functors $\Phi_{Q_{ \pm}}: D\left(X_{ \pm}\right) \rightarrow D\left(\left[X / \mathbb{G}_{m}\right]\right)$

The Q-construction for \mathbb{G}_{m}-actions

Assume \mathbb{G}_{m} acts on $X=\operatorname{Spec} T$. Then we consider two different GIT quotients X_{+}and X_{-}. Q is a sheaf on $X \times X$, and by restriction to $X_{ \pm} \times X$, we get

$$
Q_{ \pm}:=\left.Q\right|_{X_{ \pm} \times X} \text { in } D\left(X_{ \pm} \times\left[X / \mathbb{G}_{m}\right]\right),
$$

and thereby functors $\Phi_{Q_{ \pm}}: D\left(X_{ \pm}\right) \rightarrow D\left(\left[X / \mathbb{G}_{m}\right]\right)$

Theorem (Ballard-Diemer-Favero)

If $G=\mathbb{G}_{m}$ and X is smooth and affine,

$$
\Phi_{Q_{ \pm}}: D\left(X_{ \pm}\right) \rightarrow D\left(\left[X / \mathbb{G}_{m}\right]\right)
$$

is fully faithful.
If the Calabi-Yau condition is satisfied, this provides an equivalence $D\left(X_{+}\right) \cong D\left(X_{-}\right)$.

Example

VGIT problem: $X=\operatorname{Spec} \mathbb{C}\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{m}\right] \cong \mathbb{C}^{n} \times \mathbb{C}^{m}$ with a \mathbb{C}^{*}-action such that

$$
\operatorname{deg} x_{i}=+1, \quad \operatorname{deg} y_{i}=-1
$$

Example

VGIT problem: $X=\operatorname{Spec} \mathbb{C}\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{m}\right] \cong \mathbb{C}^{n} \times \mathbb{C}^{m}$ with a \mathbb{C}^{*}-action such that

$$
\operatorname{deg} x_{i}=+1, \quad \operatorname{deg} y_{i}=-1
$$

We get the GIT quotients

$$
X_{+}=\left[(X \backslash V(\vec{x})) / \mathbb{C}^{*}\right] \cong \operatorname{tot}_{\mathbb{P}_{\bar{x}}^{n-1}} \mathcal{O}(-1)^{\oplus m}, \quad X_{-}=\left[(X \backslash V(\vec{y})) / \mathbb{C}^{*}\right] \cong \operatorname{tot}_{\mathbb{P}_{\vec{y}}^{m-1}} \mathcal{O}(-1)^{\oplus n}
$$

Example

VGIT problem: $X=\operatorname{Spec} \mathbb{C}\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{m}\right] \cong \mathbb{C}^{n} \times \mathbb{C}^{m}$ with a \mathbb{C}^{*}-action such that

$$
\operatorname{deg} x_{i}=+1, \quad \operatorname{deg} y_{i}=-1
$$

We get the GIT quotients

$$
X_{+}=\left[(X \backslash V(\vec{x})) / \mathbb{C}^{*}\right] \cong \operatorname{tot}_{\mathbb{P}_{\vec{x}}^{n-1}} \mathcal{O}(-1)^{\oplus m}, \quad X_{-}=\left[(X \backslash V(\vec{y})) / \mathbb{C}^{*}\right] \cong \operatorname{tot}_{\mathbb{P}_{\vec{y}}^{m-1}} \mathcal{O}(-1)^{\oplus n}
$$

and using the Q-construction we get windows

$$
\operatorname{Im} \Phi_{Q_{+}}=\langle\mathcal{O}(-n+1), \cdots, \mathcal{O}(-1), \mathcal{O}\rangle, \quad \operatorname{Im} \Phi_{Q_{-}}=\langle\mathcal{O}, \mathcal{O}(1), \cdots, \mathcal{O}(m-1)\rangle
$$

Example

VGIT problem: $X=\operatorname{Spec} \mathbb{C}\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{m}\right] \cong \mathbb{C}^{n} \times \mathbb{C}^{m}$ with a \mathbb{C}^{*}-action such that

$$
\operatorname{deg} x_{i}=+1, \quad \operatorname{deg} y_{i}=-1
$$

We get the GIT quotients

$$
X_{+}=\left[(X \backslash V(\vec{x})) / \mathbb{C}^{*}\right] \cong \operatorname{tot}_{\mathbb{P}_{\vec{x}}^{n-1}} \mathcal{O}(-1)^{\oplus m}, \quad X_{-}=\left[(X \backslash V(\vec{y})) / \mathbb{C}^{*}\right] \cong \operatorname{tot}_{\mathbb{P}_{\vec{y}}^{m-1}} \mathcal{O}(-1)^{\oplus n}
$$

and using the Q-construction we get windows

$$
\operatorname{Im} \Phi_{Q_{+}}=\langle\mathcal{O}(-n+1), \cdots, \mathcal{O}(-1), \mathcal{O}\rangle, \quad \operatorname{Im} \Phi_{Q_{-}}=\langle\mathcal{O}, \mathcal{O}(1), \cdots, \mathcal{O}(m-1)\rangle
$$

and a semi-orthogonal decomposition (assuming $n>m$)

$$
D\left(X_{+}\right)=\langle\underbrace{D(k), \cdots, D(k)}_{n-m \text { times }}, D\left(X_{-}\right)\rangle
$$

Grassmann flip

Setup: $X=\operatorname{Hom}(V, W) \times \operatorname{Hom}\left(W^{\prime}, V\right)$, where $d:=\operatorname{dim} V<\operatorname{dim} W^{\prime} \leq \operatorname{dim} W$.

Grassmann flip

Setup: $X=\operatorname{Hom}(V, W) \times \operatorname{Hom}\left(W^{\prime}, V\right)$, where $d:=\operatorname{dim} V<\operatorname{dim} W^{\prime} \leq \operatorname{dim} W$. X has a $\mathrm{GL}(V)$-action

$$
C \cdot(A, B)=\left(C \cdot A, B \cdot C^{-1}\right)
$$

Grassmann flip

Setup: $X=\operatorname{Hom}(V, W) \times \operatorname{Hom}\left(W^{\prime}, V\right)$, where $d:=\operatorname{dim} V<\operatorname{dim} W^{\prime} \leq \operatorname{dim} W$. X has a $\mathrm{GL}(V)$-action

$$
C \cdot(A, B)=\left(C \cdot A, B \cdot C^{-1}\right)
$$

Define the GIT quotients

$$
\begin{gathered}
X_{+}=\left[\left(\operatorname{Hom}(V, W)^{\text {inj }} \times \operatorname{Hom}\left(W^{\prime}, V\right)\right) / \mathrm{GL}(V)\right] \\
X_{-}=\left[\left(\operatorname{Hom}(V, W) \times \operatorname{Hom}\left(W^{\prime}, V\right)^{\text {surj }}\right) / \mathrm{GL}(V)\right]
\end{gathered}
$$

Grassmann flip

Setup: $X=\operatorname{Hom}(V, W) \times \operatorname{Hom}\left(W^{\prime}, V\right)$, where $d:=\operatorname{dim} V<\operatorname{dim} W^{\prime} \leq \operatorname{dim} W$. X has a $\mathrm{GL}(V)$-action

$$
C \cdot(A, B)=\left(C \cdot A, B \cdot C^{-1}\right)
$$

Define the GIT quotients

$$
\begin{gathered}
X_{+}=\left[\left(\operatorname{Hom}(V, W)^{\mathrm{inj}} \times \operatorname{Hom}\left(W^{\prime}, V\right)\right) / \mathrm{GL}(V)\right] \\
X_{-}=\left[\left(\operatorname{Hom}(V, W) \times \operatorname{Hom}\left(W^{\prime}, V\right)^{\text {surj }}\right) / \mathrm{GL}(V)\right]
\end{gathered}
$$

We get isomorphisms

$$
X_{+} \cong \operatorname{tot}_{G r(d, W)}\left(\mathcal{S}^{\oplus \operatorname{dim} W^{\prime}}\right), \quad X_{-} \cong \operatorname{tot}_{G r\left(d, W^{\prime}\right)}\left(\mathcal{S}^{\oplus \operatorname{dim} W}\right)
$$

Generalized Q-construction

Let $G L(V)=\operatorname{Spec} k\left[C, \operatorname{det} C^{-1}\right]$. Define

$$
Q:=\langle\pi(k[X]), \sigma(k[X]), C\rangle \subset k[X \times G] .
$$

Generalized Q-construction

Let $G L(V)=\operatorname{Spec} k\left[C, \operatorname{det} C^{-1}\right]$. Define

$$
Q:=\langle\pi(k[X]), \sigma(k[X]), C\rangle \subset k[X \times G] .
$$

Then, Q is a partial compactification of the diagonal

$$
\mathrm{GL}(V) \times X \xrightarrow{\operatorname{End}(V) \times X \cong Q} \text {, } X \times X .
$$

Generalized Q-construction

Let $G L(V)=\operatorname{Spec} k\left[C, \operatorname{det} C^{-1}\right]$. Define

$$
Q:=\langle\pi(k[X]), \sigma(k[X]), C\rangle \subset k[X \times G] .
$$

Then, Q is a partial compactification of the diagonal

Theorem (Ballard-C-Favero-McFaddin-Vandermolen)

Consider $Q_{ \pm}:=\left.Q\right|_{X_{ \pm} \times x}$. Then the functors

$$
\Phi_{Q_{ \pm}}: D\left(X_{ \pm}\right) \rightarrow D([X / \mathrm{GL}(V)])
$$

are fully-faithful, and the essential images are generated by Kapranov's collection.

Equivalences for Grassmann flops

Recall Kapranov's collection $\mathrm{K}_{d, \mathrm{dim}} w$ on $\operatorname{Gr}(d, W)=\left[\operatorname{Hom}(V, W)^{\text {inj }} / \mathrm{GL}(V)\right]$:
$\mathrm{K}_{d, \operatorname{dim} W}:=\left\{L_{\lambda}(V) \mid \lambda\right.$ is a Young diagram of height $\leq \operatorname{dim} W-d$ and width $\left.\leq d\right\}$

Equivalences for Grassmann flops

Recall Kapranov's collection $\mathrm{K}_{d, \mathrm{dim}} w$ on $\operatorname{Gr}(d, W)=\left[\operatorname{Hom}(V, W)^{\mathrm{inj}} / \mathrm{GL}(V)\right]$:

$$
\mathrm{K}_{d, \operatorname{dim} w}:=\left\{L_{\lambda}(V) \mid \lambda \text { is a Young diagram of height } \leq \operatorname{dim} W-d \text { and width } \leq d\right\}
$$

Theorem (BCFMV)

Let $j: X_{-} \rightarrow[X / G L(V)]$ denote the inclusion. When $\operatorname{dim} W=\operatorname{dim} W^{\prime}$, the functor $j^{*} \circ \Phi_{Q_{+}}: D\left(X_{+}\right) \rightarrow D\left(X_{-}\right)$is an equivalence.

Previous work by Buchweitz-Leuschke-van den Bergh ('11) and Donovan-Segal ('12).

Equivalences for Grassmann flops

Recall Kapranov's collection $\mathrm{K}_{d, \mathrm{dim}} w$ on $\operatorname{Gr}(d, W)=\left[\operatorname{Hom}(V, W)^{\mathrm{inj}} / \mathrm{GL}(V)\right]$:

$$
\mathrm{K}_{d, \operatorname{dim} w}:=\left\{L_{\lambda}(V) \mid \lambda \text { is a Young diagram of height } \leq \operatorname{dim} W-d \text { and width } \leq d\right\}
$$

Theorem (BCFMV)

Let $j: X_{-} \rightarrow[X / G L(V)]$ denote the inclusion. When $\operatorname{dim} W=\operatorname{dim} W^{\prime}$, the functor $j^{*} \circ \Phi_{Q_{+}}: D\left(X_{+}\right) \rightarrow D\left(X_{-}\right)$is an equivalence.

Previous work by Buchweitz-Leuschke-van den Bergh ('11) and Donovan-Segal ('12).
What about $\operatorname{dim} W \neq \operatorname{dim} W^{\prime}$?

SODs

Recall that $X=\operatorname{Hom}(V, W) \times \operatorname{Hom}\left(W^{\prime}, V\right)$, with $\operatorname{dim} V<\operatorname{dim} W^{\prime}<\operatorname{dim} W$.

SODs

Recall that $X=\operatorname{Hom}(V, W) \times \operatorname{Hom}\left(W^{\prime}, V\right)$, with $\operatorname{dim} V<\operatorname{dim} W^{\prime}<\operatorname{dim} W$.

Theorem (BCFMV)

There is a semi-orthogonal decomposition

$$
D\left(X_{+}\right)=\left\langle\mathrm{O}_{d, \operatorname{dim}} w-1, D\left(X_{-}\right)\right\rangle
$$

where $O_{d, \operatorname{dim} W-1}$ is supported on
$\left[\operatorname{Hom}(V, W)^{\text {inj }} \times\{\right.$ non-surjective maps $\left.\} / \mathrm{GL}(V)\right] \subset X_{+}$

Orthogonal category $\mathrm{O}_{d, s}$

Let H be a vector space of dimension $d-1$. Consider

$$
h:\left[\frac{\operatorname{Hom}(V, W)^{\mathrm{inj}} \times \operatorname{Hom}\left(W^{\prime}, H\right) \times \operatorname{Hom}(H, V)^{\mathrm{inj}}}{\operatorname{GL}(H) \times \operatorname{GL}(V)}\right] \rightarrow\left[\frac{\operatorname{Hom}(V, W)^{\mathrm{inj}} \times \operatorname{Hom}\left(W^{\prime}, V\right)}{\operatorname{GL}(V)}\right] .
$$

Orthogonal category $\mathrm{O}_{d, s}$

Let H be a vector space of dimension $d-1$. Consider

$$
h:\left[\frac{\operatorname{Hom}(V, W)^{\mathrm{inj}} \times \operatorname{Hom}\left(W^{\prime}, H\right) \times \operatorname{Hom}(H, V)^{\mathrm{inj}}}{\operatorname{GL}(H) \times \operatorname{GL}(V)}\right] \rightarrow\left[\frac{\operatorname{Hom}(V, W)^{\mathrm{inj}} \times \operatorname{Hom}\left(W^{\prime}, V\right)}{\operatorname{GL}(V)}\right] .
$$

Definition

The category $\mathrm{O}_{d, s}$ is generated by

$$
\left(h_{*}\left(L_{\lambda(i)}\right) H^{\vee}\right)^{\vee} \otimes \operatorname{det} V^{s-i} \text { for } \operatorname{dim} W^{\prime} \leq i \leq s
$$

where $\lambda(i)$ runs over the set of Young diagrams of height $i+1-d$ and width $d-1$.

Example

Let $d=2, \operatorname{dim} W^{\prime}=3$ and $\operatorname{dim} W=4$. Then we have

$$
X_{+} \cong \operatorname{tot}_{\operatorname{Gr}(2,4)}\left(\mathcal{S}^{\oplus 3}\right), \quad X_{-} \cong \operatorname{tot}_{\mathrm{Gr}(2,3)}\left(\mathcal{S}^{\oplus 4}\right)
$$

Example

Let $d=2, \operatorname{dim} W^{\prime}=3$ and $\operatorname{dim} W=4$. Then we have

$$
X_{+} \cong \operatorname{tot}_{\operatorname{Gr}(2,4)}\left(\mathcal{S}^{\oplus 3}\right), \quad X_{-} \cong \operatorname{tot}_{\operatorname{Gr}(2,3)}\left(\mathcal{S}^{\oplus 4}\right)
$$

$D\left(X_{+}\right)=\langle\mathcal{O}, \square, \square, \square, \square, \square\rangle\left(X_{-}\right)=\langle\mathcal{O}, \square, \square, \square\rangle$

Example

Let $d=2, \operatorname{dim} W^{\prime}=3$ and $\operatorname{dim} W=4$. Then we have

$$
X_{+} \cong \operatorname{tot}_{\operatorname{Gr}(2,4)}\left(\mathcal{S}^{\oplus 3}\right), \quad X_{-} \cong \operatorname{tot}_{\operatorname{Gr}(2,3)}\left(\mathcal{S}^{\oplus 4}\right)
$$

$D\left(X_{+}\right)=\langle\mathcal{O}, \square, \square, \square, \square, \square\rangle\left(X_{-}\right)=\langle\mathcal{O}, \square, \square, \square\rangle$
The orthogonal $\mathrm{O}_{2,3}$ is

$$
\left\langle\left(h_{*} \mathcal{O}\right)^{\vee},\left(h_{*} L \square\left(H^{\vee}\right)\right)^{\vee},\left(h_{*} L \square^{\left(H^{\vee}\right)}\right)^{\vee}\right\rangle
$$

Is there a geometric description of the orthogonal subcategory?

Is there a geometric description of the orthogonal subcategory?

Thank you!

