Grassmann flips and SODs

Nitin Chidambaram

Max Planck Institute for Mathematics

August 19, 2020

arXiv:1904.12195 [math.AG] joint w/ Ballard, Favero, McFaddin, Vandermolen

Outline

- Variation of GIT quotients and windows
- Q-construction
- Grassmann flips
- Semi Orthogonal Decompositions

VGIT and windows – Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, . . .

VGIT and windows – Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, . . . Fix a variety X, with a G-action.

$$G \times X \xrightarrow{\sigma} X$$
 $\pi(g,x) = x, \ \sigma(g,x) = g.x$

VGIT and windows – Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, . . . Fix a variety X, with a G-action.

$$G \times X \xrightarrow{\sigma} X$$
 $\pi(g,x) = x, \ \sigma(g,x) = g.x$

Construct a fully-faithful window functor

$$\Phi: D(X/\!\!/_G) \longrightarrow D([X/G]).$$

The essential image Im Φ is called a *window*.

VGIT and windows – Herbst-Hori-Page, Segal, Ballard-Favero-Katzarkov, Halpern-Leistner, ... Fix a variety X, with a G-action.

$$G \times X \xrightarrow{\sigma} X$$
 $\pi(g,x) = x, \ \sigma(g,x) = g.x$

Construct a fully-faithful window functor

$$\Phi: D(X/\!\!/_G) \longrightarrow D([X/G]).$$

The essential image Im Φ is called a *window*.

Compare the derived categories of different GIT quotients by comparing the windows.

The *Q*-construction

How do we construct window functors?

The *Q*-construction

How do we construct window functors?

Ballard-Diemer-Favero('17): Construct an object Q

 ${\it Q}$ – partial compactification of the diagonal.

The *Q*-construction

How do we construct window functors?

Ballard-Diemer-Favero('17): Construct an object Q

When
$$G = \mathbb{G}_m = \operatorname{Spec} k[u, u^{-1}]$$
 and $X = \operatorname{Spec} T$, BDF defines $Q := \langle \pi(T), \sigma(T), u \rangle \subset k[\mathbb{G}_m \times X]$

Example: If $X = \mathbb{A}^n$, $Q \cong \mathbb{A}^1 \times X$.

Q – partial compactification of the diagonal.

The Q-construction for \mathbb{G}_m -actions

Assume \mathbb{G}_m acts on $X = \operatorname{Spec} T$. Then we consider two different GIT quotients X_+ and X_- .

The Q-construction for \mathbb{G}_m -actions

Assume \mathbb{G}_m acts on $X=\operatorname{Spec} T$. Then we consider two different GIT quotients X_+ and X_- .

Q is a sheaf on $X \times X$, and by restriction to $X_{\pm} \times X$, we get

$$Q_{\pm} := Q|_{X_{\pm} \times X} \text{ in } D(X_{\pm} \times [X/\mathbb{G}_m]),$$

and thereby functors $\Phi_{Q_\pm}:D(X_\pm) o D([X/\mathbb{G}_m])$

The Q-construction for \mathbb{G}_m -actions

Assume \mathbb{G}_m acts on $X = \operatorname{Spec} T$. Then we consider two different GIT quotients X_+ and X_- .

Q is a sheaf on $X \times X$, and by restriction to $X_{\pm} \times X$, we get

$$Q_{\pm} := Q|_{X_{\pm} \times X} \text{ in } D(X_{\pm} \times [X/\mathbb{G}_m]),$$

and thereby functors $\Phi_{Q_\pm}:D(X_\pm) o D([X/\mathbb{G}_m])$

Theorem (Ballard-Diemer-Favero)

If $G = \mathbb{G}_m$ and X is smooth and affine,

$$\Phi_{Q_{\pm}}:D(X_{\pm})\to D([X/\mathbb{G}_m])$$

is fully faithful.

If the Calabi-Yau condition is satisfied, this provides an equivalence $D(X_+) \cong D(X_-)$.

VGIT problem:
$$X=\operatorname{Spec}\mathbb{C}[x_1,\cdots,x_n,y_1,\cdots,y_m]\cong\mathbb{C}^n\times\mathbb{C}^m$$
 with a \mathbb{C}^* -action such that
$$\deg x_i=+1,\qquad \deg y_i=-1.$$

VGIT problem:
$$X = \operatorname{Spec} \mathbb{C}[x_1, \cdots, x_n, y_1, \cdots, y_m] \cong \mathbb{C}^n \times \mathbb{C}^m$$
 with a \mathbb{C}^* -action such that $\deg x_i = +1$. $\deg y_i = -1$.

We get the GIT quotients

$$X_{+} = \left[\left(X \setminus V(\vec{x}) \right) / \mathbb{C}^{*} \right] \cong \operatorname{tot}_{\mathbb{P}^{n-1}_{\vec{x}}} \mathcal{O}(-1)^{\oplus m}, \ \ X_{-} = \left[\left(X \setminus V(\vec{y}) \right) / \mathbb{C}^{*} \right] \cong \operatorname{tot}_{\mathbb{P}^{m-1}_{\vec{y}}} \mathcal{O}(-1)^{\oplus n},$$

VGIT problem:
$$X = \operatorname{Spec} \mathbb{C}[x_1, \cdots, x_n, y_1, \cdots, y_m] \cong \mathbb{C}^n \times \mathbb{C}^m$$
 with a \mathbb{C}^* -action such that $\deg x_i = +1, \qquad \deg y_i = -1.$

We get the GIT quotients

$$X_{+} = \left[\left(X \setminus V(\vec{x}) \right) / \mathbb{C}^{*} \right] \cong \mathsf{tot}_{\mathbb{P}^{n-1}_{\vec{x}}} \, \mathcal{O}(-1)^{\oplus m}, \ \ X_{-} = \left[\left(X \setminus V(\vec{y}) \right) / \mathbb{C}^{*} \right] \cong \mathsf{tot}_{\mathbb{P}^{m-1}_{\vec{y}}} \, \mathcal{O}(-1)^{\oplus n},$$

and using the Q-construction we get windows

$$\operatorname{Im} \Phi_{Q_+} = \langle \mathcal{O}(-n+1), \cdots, \mathcal{O}(-1), \mathcal{O} \rangle \,, \qquad \operatorname{Im} \Phi_{Q_-} = \langle \mathcal{O}, \mathcal{O}(1), \cdots, \mathcal{O}(m-1) \rangle,$$

VGIT problem: $X = \operatorname{Spec} \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_m] \cong \mathbb{C}^n \times \mathbb{C}^m$ with a \mathbb{C}^* -action such that

$$\deg x_i = +1, \qquad \deg y_i = -1.$$

We get the GIT quotients

$$X_+ = \left[\left(X \setminus V(ec{x})
ight) / \mathbb{C}^*
ight] \cong \operatorname{tot}_{\mathbb{P}^{n-1}_{ec{x}}} \mathcal{O}(-1)^{\oplus m}, \ \ X_- = \left[\left(X \setminus V(ec{y})
ight) / \mathbb{C}^*
ight] \cong \operatorname{tot}_{\mathbb{P}^{m-1}_{ec{y}}} \mathcal{O}(-1)^{\oplus n},$$

and using the Q-construction we get windows

$$\operatorname{Im} \Phi_{Q_+} = \langle \mathcal{O}(-n+1), \cdots, \mathcal{O}(-1), \mathcal{O} \rangle, \qquad \operatorname{Im} \Phi_{Q_-} = \langle \mathcal{O}, \mathcal{O}(1), \cdots, \mathcal{O}(m-1) \rangle,$$

and a semi-orthogonal decomposition (assuming n > m)

$$D(X_{+}) = \langle \underbrace{D(k), \cdots, D(k)}_{n-m \text{ times}}, D(X_{-}) \rangle$$

Setup: $X = \text{Hom}(V, W) \times \text{Hom}(W', V)$, where $d := \dim V < \dim W' \le \dim W$.

Setup: $X = \text{Hom}(V, W) \times \text{Hom}(W', V)$, where $d := \dim V < \dim W' \le \dim W$.

X has a GL(V)-action

$$C.(A, B) = (C.A, B.C^{-1})$$

Setup: $X = \text{Hom}(V, W) \times \text{Hom}(W', V)$, where $d := \dim V < \dim W' \le \dim W$.

X has a GL(V)-action

$$C.(A, B) = (C.A, B.C^{-1})$$

Define the GIT quotients

$$X_{+} = \left[\left(\mathsf{Hom}(V, W)^{\mathsf{inj}} \times \mathsf{Hom}(W', V) \right) / \mathsf{GL}(V) \right],$$

$$X_{-} = \left[\left(\mathsf{Hom}(V, W) \times \mathsf{Hom}(W', V)^{\mathsf{surj}} \right) / \mathsf{GL}(V) \right].$$

Setup: $X = \text{Hom}(V, W) \times \text{Hom}(W', V)$, where $d := \dim V < \dim W' \le \dim W$.

X has a GL(V)-action

$$C.(A,B) = (C.A,B.C^{-1})$$

Define the GIT quotients

$$X_{+} = \left[\left(\mathsf{Hom}(V, W)^{\mathsf{inj}} \times \mathsf{Hom}(W', V) \right) / \mathsf{GL}(V) \right],$$

$$X_{-} = \left[\left(\mathsf{Hom}(V, W) \times \mathsf{Hom}(W', V)^{\mathsf{surj}} \right) / \mathsf{GL}(V) \right].$$

We get isomorphisms

$$X_+ \cong \mathsf{tot}_{\mathsf{Gr}(d,W)} \left(\mathcal{S}^{\oplus \dim W'}
ight), \qquad X_- \cong \mathsf{tot}_{\mathsf{Gr}(d,W')} \left(\mathcal{S}^{\oplus \dim W}
ight).$$

Generalized Q-construction

Let
$$GL(V) = \operatorname{Spec} k[C, \det C^{-1}]$$
. Define
$$Q := \langle \pi(k[X]), \sigma(k[X]), C \rangle \subset k[X \times G].$$

Generalized *Q*-construction

Let
$$\operatorname{GL}(V)=\operatorname{Spec} k[C,\det C^{-1}].$$
 Define $Q:=\langle \pi(k[X]),\sigma(k[X]),C\rangle\subset k[X imes G].$

Then, Q is a partial compactification of the diagonal

Generalized Q-construction

Let $GL(V) = \operatorname{Spec} k[C, \det C^{-1}]$. Define

$$Q := \langle \pi(k[X]), \sigma(k[X]), C \rangle \subset k[X \times G].$$

Then, Q is a partial compactification of the diagonal

$$\operatorname{End}(V) \times X \cong Q$$

$$\downarrow \qquad \qquad \downarrow$$
 $\operatorname{GL}(V) \times X \xrightarrow{\pi \times \sigma} X \times X.$

Theorem (Ballard-C-Favero-McFaddin-Vandermolen)

Consider $Q_{\pm} := Q|_{X_{+} \times X}$. Then the functors

$$\Phi_{Q_{\pm}}:D(X_{\pm})\to D([X/\mathsf{GL}(V)])$$

are fully-faithful, and the essential images are generated by Kapranov's collection.

Equivalences for Grassmann flops

Recall Kapranov's collection $K_{d,\dim W}$ on $Gr(d, W) = [Hom(V, W)^{inj}/GL(V)]$:

 $\mathsf{K}_{d,\dim W} := \{ L_{\lambda}(V) \, | \, \lambda \text{ is a Young diagram of height} \leq \dim W - d \text{ and width } \leq d \}$

Equivalences for Grassmann flops

Recall Kapranov's collection $K_{d,\dim W}$ on $Gr(d,W) = [Hom(V,W)^{inj}/GL(V)]$:

 $\mathsf{K}_{d,\dim W} := \{L_{\lambda}(V) \mid \lambda \text{ is a Young diagram of height} \leq \dim W - d \text{ and width } \leq d\}$

Theorem (BCFMV)

Let $j: X_- \to [X/GL(V)]$ denote the inclusion. When $\dim W = \dim W'$, the functor $j^* \circ \Phi_{O_+}: D(X_+) \to D(X_-)$ is an equivalence.

Previous work by Buchweitz-Leuschke-van den Bergh ('11) and Donovan-Segal ('12).

Equivalences for Grassmann flops

Recall Kapranov's collection $K_{d,\dim W}$ on $Gr(d, W) = [Hom(V, W)^{inj}/GL(V)]$:

 $\mathsf{K}_{d,\dim W} := \{L_{\lambda}(V) \,|\, \lambda \text{ is a Young diagram of height} \leq \dim W - d \text{ and width } \leq d\}$

Theorem (BCFMV)

Let $j: X_- \to [X/GL(V)]$ denote the inclusion. When $\dim W = \dim W'$, the functor $j^* \circ \Phi_{Q_+}: D(X_+) \to D(X_-)$ is an equivalence.

Previous work by Buchweitz-Leuschke-van den Bergh ('11) and Donovan-Segal ('12).

What about dim $W \neq \dim W'$?

SODs

Recall that $X = \text{Hom}(V, W) \times \text{Hom}(W', V)$, with dim V < dim W' < dim W.

SODs

Recall that $X = \text{Hom}(V, W) \times \text{Hom}(W', V)$, with dim V < dim W' < dim W.

Theorem (BCFMV)

There is a semi-orthogonal decomposition

$$D(X_+) = \langle O_{d,\dim W-1}, D(X_-) \rangle,$$

where $O_{d,\dim W-1}$ is supported on

$$[\mathsf{Hom}(V,W)^{\mathsf{inj}} imes \{\mathit{non-surjective\ maps}\}/\mathsf{GL}(V)] \subset X_+$$

Orthogonal category $O_{d,s}$

Let H be a vector space of dimension d-1. Consider

$$h: \left[\frac{\mathsf{Hom}(V,W)^{\mathsf{inj}} \times \mathsf{Hom}(W',H) \times \mathsf{Hom}(H,V)^{\mathsf{inj}}}{\mathsf{GL}(H) \times \mathsf{GL}(V)}\right] \to \left[\frac{\mathsf{Hom}(V,W)^{\mathsf{inj}} \times \mathsf{Hom}(W',V)}{\mathsf{GL}(V)}\right].$$

Orthogonal category $O_{d,s}$

Let H be a vector space of dimension d-1. Consider

$$h: \left[\frac{\mathsf{Hom}(V,W)^{\mathsf{inj}} \times \mathsf{Hom}(W',H) \times \mathsf{Hom}(H,V)^{\mathsf{inj}}}{\mathsf{GL}(H) \times \mathsf{GL}(V)}\right] \to \left[\frac{\mathsf{Hom}(V,W)^{\mathsf{inj}} \times \mathsf{Hom}(W',V)}{\mathsf{GL}(V)}\right].$$

Definition

The category $O_{d,s}$ is generated by

$$(h_*(L_{\lambda(i)})H^{\vee})^{\vee} \otimes \det V^{s-i}$$
 for dim $W' \leq i \leq s$,

where $\lambda(i)$ runs over the set of Young diagrams of height i+1-d and width d-1.

Let
$$d = 2$$
, dim $W' = 3$ and dim $W = 4$. Then we have

$$X_{+} \cong \mathsf{tot}_{\mathsf{Gr}(2,4)}\left(\mathcal{S}^{\oplus 3}\right), \qquad X_{-} \cong \mathsf{tot}_{\mathsf{Gr}(2,3)}\left(\mathcal{S}^{\oplus 4}\right).$$

Let d = 2, dim W' = 3 and dim W = 4. Then we have

$$X_{+} \cong \mathsf{tot}_{\mathsf{Gr}(2,4)}\left(\mathcal{S}^{\oplus 3}
ight), \qquad X_{-} \cong \mathsf{tot}_{\mathsf{Gr}(2,3)}\left(\mathcal{S}^{\oplus 4}
ight).$$

$$D(X_{+}) = \left\langle \mathcal{O}, \square, \square, \dots, \square \right\rangle$$
 $D(X_{-}) = \left\langle \mathcal{O}, \square, \square \right\rangle$

Let d=2, dim W'=3 and dim W=4. Then we have

$$X_{+} \cong \mathsf{tot}_{\mathsf{Gr}(2,4)}\left(\mathcal{S}^{\oplus 3}
ight), \qquad X_{-} \cong \mathsf{tot}_{\mathsf{Gr}(2,3)}\left(\mathcal{S}^{\oplus 4}
ight).$$

$$D(X_{+}) = \left\langle \mathcal{O}, \square, \square, \dots, \square \right\rangle$$
 $D(X_{-}) = \left\langle \mathcal{O}, \square, \square \right\rangle$

The orthogonal $O_{2,3}$ is

$$\left\langle (h_*\mathcal{O})^ee, \left(h_*\mathcal{L}_{\square}(H^ee)\right)^ee, \left(h_*\mathcal{L}_{\square}(H^ee)\right)^ee
ight
angle$$

Is there a geometric description of the orthogonal subcategory?

Is there a geometric description of the orthogonal subcategory?

Thank you!