m-dimers: A unifying perspective on worldvolume gauge theories on D-branes
arXiv:1811.07016 (JHEP03(2019)053)
arXiv:1904.07954 (JHEP11(2019)104)
arXiv:2004.13765

Azeem UI Hasan

Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento \& I. N. F. N. - sezione di Lecce,
Via Arnesano 1, I-73100 Lecce, Italy

Outline

- Introduction and Motivation
- Graded Quivers
- m-Dimers
- Products
- Topological B-model
- Conclusions

Introduction

Gauge Theories and Calabi-Yau: A Recap

- D-branes probing a singularity is a powerful setup to study both Physics and Geometry.
- Supersymmetry requires that the probed singularity is a Calabi-Yau.
- The probed geometry appears as the moduli space of vacua for the corresponding theory.
- This setup realizes the theories with minimal SUSY in even dimensions starting from 6 to 0.

m	0	1	2	3
CY	CY_{2}	CY_{3}	CY_{4}	CY_{5}
SUSY	$6 \mathrm{~d} \mathcal{N}=(1,0)$	$4 \mathrm{~d} \mathcal{N}=1$	$2 \mathrm{~d} \mathcal{N}=(0,2)$	$0 \mathrm{~d} \mathcal{N}=1$

A Unified Description

- Minimally supersymmetric theories in different dimensions have different structures but there are also remarkable connections.
- The number of multiplets and types of interactions increases in a uniform manner as we go down in spacetime dimension.
- There are "dualities" relating these theories. The order of these dualities increases by 1 at each step.
- These are indications that these theories fit in a family.
- Describing this family requires a new language that captures the similarities and organizes the differences.

Graded Quivers

m-Graded Quivers

The fields in the $\mathrm{D}(5-2 m)$-brane worldvolume theory realize an m-graded quiver.

- We represent $U(N)$ gauge groups as nodes.
- Bifundamental or adjoint fields are represented as arrows.
- To distinguish between different types of fields we assign each arrow a "degree" c $(0 \leq c \leq m)$.
- For every field $i \xrightarrow{(c)} j$ there is also the conjugate field $j \xrightarrow{(m-c)} i$

$$
\begin{gathered}
\mathbf{m}=\mathbf{0}: 6 d(1,0) \text { SUSY } \\
c=0: 0 \longrightarrow \text { Hyper }
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{m}=1: 4 d \mathcal{N}=1 \text { SUSY } \\
\mathrm{c}=0: \bigcirc \longrightarrow 0 \text { Chiral }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{m}=2: 2 d(0,2) \\
& \mathrm{c}=0: \mathrm{O} \longrightarrow \text { Chiral } \\
& \mathrm{c}=1: \mathrm{O} \longrightarrow \text { Fermi }
\end{aligned}
$$

$$
\mathbf{m}=3: \operatorname{Od} \mathcal{N}=1 \text { SUSY }
$$

$$
c=0: \bigcirc \longrightarrow O \text { Chiral }
$$

$$
\mathrm{c}=1: \bigcirc \longrightarrow \mathrm{O} \text { Conjugate Fermi }
$$

Superpotentials (Interactions)

Path

- A cycle C is a path that begins and end at the same node subject to identification

$$
A_{i j}^{(c)} B_{j i}^{(d)} \sim(-1)^{c d} B_{j i}^{(d)} A_{i j}^{(c)}
$$

- Superpotential W is a linear combination of cycles of degree $m-1$.

Cycle

Superpotentials (Interactions)

Path

- A cycle C is a path that begins and end at the same node subject to identification

$$
A_{i j}^{(c)} B_{j i}^{(d)} \sim(-1)^{c d} B_{j i}^{(d)} A_{i j}^{(c)}
$$

- Superpotential W is a linear combination of cycles of degree $m-1$.

Cycle

The Degree Constraint

- $\mathbf{m}=\mathbf{0}$: No Superpotential
- $\mathbf{m}=\mathbf{2}$:
$W=\Lambda_{a} J_{a}(X)+\bar{\Lambda}_{a} E_{a}(X)$
- $\mathbf{m}=1: W=W(X)$
- $\mathbf{m}=3$:
$W=\Lambda_{a} J_{a}(X)+\bar{\Lambda}_{a} \bar{\Lambda}_{b} H_{a b}(X)$

Constraints due to SUSY: Kontsevich Bracket

- Kontsevich bracket is defined to be

$$
\{f, g\}=\sum_{\Phi} \frac{\partial f}{\partial \Phi} \frac{\partial g}{\partial \bar{\Phi}}-(-1)^{s(\Phi)} \frac{\partial f}{\partial \bar{\Phi}} \frac{\partial g}{\partial \Phi}
$$

- Superpotential is required to have vanishing Kontsevich bracket with itself.

$$
\{W, W\}=0
$$

Constraints due to SUSY: Kontsevich Bracket

- Kontsevich bracket is defined to be

$$
\{f, g\}=\sum_{\Phi} \frac{\partial f}{\partial \Phi} \frac{\partial g}{\partial \bar{\Phi}}-(-1)^{s(\Phi)} \frac{\partial f}{\partial \bar{\Phi}} \frac{\partial g}{\partial \Phi}
$$

- Superpotential is required to have vanishing Kontsevich bracket with itself.

$$
\{W, W\}=0
$$

Constraint for small m

- $\mathbf{m}=\mathbf{0}$: No superpotential
- $\mathbf{m}=2: \sum_{a} \operatorname{tr} E_{a} J_{a}=0$
- $\mathbf{m = 1}$: Trivial
- $\mathbf{m}=3: \sum_{b} H_{a b} J_{b}=0$

Ranks and Anomaly Cancellation

- The ranks of gauge groups satisfy the anomaly cancellation equations.

$$
\left(1+(-1)^{m}\right) N_{i}=\sum_{j} \sum_{c=0}^{m}(-1)^{m-c} n_{j i}^{(c)} N_{j}
$$

Where $n_{j i}^{(c)}$ is the number of arrows of degree c going from node j to i.

- We will restrict to the case where all nodes have the same rank.

m-Dimers: Connecting Geometry and QFT

The Problem:

We want a dictionary between:

- The worldvolume QFT described as an m-graded quiver with superpotential.
- The probed Calabi-Yau singularity described by its realization as a GLSM or equivalently as a convex polygon in \mathbb{Z}^{m+1} i.e the toric diagram.

D-Branes probing CY

Brane Tilings and Brane Brick Models

The brane configuration we are chasing is T-dual to another one that involves D-branes suspended from NS5-branes. This
configuration directly encodes the field theory.
D3-Branes and CY3 [Franco, Hanany et al (2006)]

\Rightarrow

D1-Branes and CY4 [Franco, Lee et al (2015)]

m-Dimers [Franco, AH (2019)]

An m-Dimer is a tessellation of \mathbb{T}^{m+1} that connects a $C Y_{m+2}$ with the corresponding SUSY field theory.

m-dimer	Gauge Theory
Codimension-0 face (brick)	Gauge group
Codimension-1 face of	Degree c field in the
degree c between	
bricks i and j	bifundamental representation of nodes i and j (adjoint for $i=j$)
Codimension-2 face	A monomial in the superpotential

They generalize brane tilings and brane brick models and can be defined for any m.

Periodic Quivers

The dual to the dimer model is a quiver embedded on \mathbb{T}^{m+1} called a periodic quiver.

```
m=1: F
```


\Rightarrow

$\mathrm{m}=2: \mathbb{C}^{4} / \mathbb{Z}_{4}$

An Infinite Family: $\mathbb{C}^{m+2} / \mathbb{Z}_{m+2}$ [Closset, Franco, Guo, AH (2018)]

- Has a global $S U(m+2)$ symmetry.
- Arrows in quiver fall in representations of this

$$
S U(m+2)
$$

- There are $m+2$ nodes.
- Between i and $i+k$ there is an arrow $\Phi_{i, i+k}^{(k-1 ; k)}$. It has degree $k-1$ and transforms in the representation with k antisymmetric indices.
- Potential is

$$
W=\sum_{i+j+k<m+2} \Phi_{i, i+j}^{(j-1 ; j)} \Phi_{i+j, i+j+k}^{(k-1 ; k)} \bar{\Phi}_{i+j+k, i}^{(m+1-j-k ; m+2-j-k)}
$$

Quivers

(a) $m=0$

(b) $\mathrm{m}=1$

(c) $\mathrm{m}=2$

(d) $m=3$

Perfect Matchings

- A perfect matching p of an m-dimer is a collection of fields satisfying two simple properties
- For every field Φ, either $\Phi \in p$ or $\bar{\Phi} \in p$ but not both.
- p contains exactly one field from each term in the superpotential W.
- A perfect matching is determined entirely by chiral fields in it.
- Due to special structure of dimer models, they can be mapped to GLSM fields parameterizing the moduli space of the corresponding theory.
- Their intersections of fields in p with the fundamental cycles of the torus, determine the position of corresponding GLSM in the toric diagram.

Product of Dimer Models

Franco, AH (2020)

The Algorithm

- Products is an algorithm that takes as inputs
- An m-dimer P with a perfect matching p of P.
- An n-dimer Q with a perfect matching q of Q.
- The output is an $n+m+1$-dimer $P_{p} \times Q_{q}$.
- This allows us to construct complicated geometries starting from simple ones.

An example of product connecting geometries

Periodic Quivers

Gauge Group \times Gauge Group

Field in $p \times$ Gauge Group

Gauge Group \times Field in q

Field in $p \times$ Field in q

An example: F_{0}

An example: F_{0}

Toric Diagram

An example: F_{0}

Toric Diagram

An example: F_{0}

Toric Diagram

Quivers

An example: F_{0}

Toric Diagram

Quivers

An example: F_{0}

Toric Diagram

Quivers

An example: F_{0}

Toric Diagram

Quivers

An example: F_{0}

Toric Diagram

Quivers

Conifold \times Conifold

$4 d \mathcal{N}=1$: Conifold

Conifold \times Conifold

$4 d \mathcal{N}=1$: Conifold

$\operatorname{dd} \mathcal{N}=1:$ Conifold \times Conifold

- 13 chiral and 19 fermi fields.
- 56 quartic terms descending from superpotentials of parent conifolds.
- 32 additional cubic and 36 additional quintic terms.

Connected Sums?

- Products can be regarded as an algorithm for constructing an graph embedded on $X \times Y$ given graphs embedded on X and Y.
- Simplest example: Quiver blocks are graphs on $\mathbb{T}^{m+1} \times I$
- Periodic quivers can be formed by gluing a number of quiver block for a given quiver Q but possibly different perfect matching p along their boundaries.
- Maybe such operations are part of a large class of "surgeries" on dimer models.

Topological B-model

Aspinwall, Katz (2004); Closset, Franco, Guo, AH (2018)

Topological B-model

- Topological B-model on a Calabi Yau $m+2$-fold X_{m+2} can be defined for any $m \geq 2$.
- It is described by an m-graded quiver.
- Topological B-model can be formalized in terms of an exceptional collection \mathcal{E}_{i} of sheafs on a resolution of X_{m+2}.
- The dictionary is as follows

B-Model	Graded Quiver	Sheaf Theory
Brane	Node i	Sheaf \mathcal{E}_{i}
Open String	$i \stackrel{(c)}{\longrightarrow} j$	Generator of Ext ${ }^{c+1}\left(\mathcal{E}_{i}, \mathcal{E}_{j}\right)$
Correlation function	Potential	Products m_{k}
"Supersymmetry"	$\{\mathrm{W}, \mathrm{W}\}=0$	A_{∞} relations on m_{k}

Conclusions and Outlook

Conclusions

- m-graded quivers for provide us a language for unified description of minimally supersymmetric theories across dimensions.
- This unified description helps us chart the space of theses theories and reveals some interesting relationships between theories in different dimensions.
- m-dimers facilitate the connections between Calabi-Yau $m+2$-folds and the corresponding SUSY theory.
- For all m they can be realized as the configurations of B-branes in topological string theory.

