m-dimers: A unifying perspective on worldvolume gauge theories on D-branes

arXiv:1811.07016 (JHEP03(2019)053) arXiv:1904.07954 (JHEP11(2019)104) arXiv:2004.13765

Azeem UI Hasan

Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento & I. N. F. N. - sezione di Lecce, Via Arnesano 1, I-73100 Lecce, Italy

- Introduction and Motivation
- Graded Quivers
- *m*-Dimers
- Products
- Topological B-model
- Conclusions

Introduction

Gauge Theories and Calabi-Yau: A Recap

- D-branes probing a singularity is a powerful setup to study both Physics and Geometry.
- Supersymmetry requires that the probed singularity is a Calabi-Yau.
- The probed geometry appears as the moduli space of vacua for the corresponding theory.
- This setup realizes the theories with minimal SUSY in even dimensions starting from 6 to 0.

т	0	1	2	3
CY	CY ₂	CY ₃	CY ₄	CY ₅
SUSY	6d $\mathcal{N}=(1,0)$	$\text{4d }\mathcal{N}=1$	$2d\ \mathcal{N}=(0,2)$	$\text{Od }\mathcal{N}=1$

A Unified Description

- Minimally supersymmetric theories in different dimensions have different structures but there are also remarkable connections.
- The number of multiplets and types of interactions increases in a uniform manner as we go down in spacetime dimension.
- There are "dualities" relating these theories. The order of these dualities increases by 1 at each step.
- These are indications that these theories fit in a family.
- Describing this family requires a new language that captures the similarities and organizes the differences.

Graded Quivers

m-Graded Quivers

The fields in the D(5-2m)-brane worldvolume theory realize an *m*-graded quiver.

- We represent U(N) gauge groups as nodes.
- Bifundamental or adjoint fields are represented as arrows.
- To distinguish between different types of fields we assign each arrow a "degree" c (0 ≤ c ≤ m).
- For every field $i \xrightarrow{(c)} j$ there is also the conjugate field $j \xrightarrow{(m-c)} i$

m=0: 6d (1,0) **SUSY** c=0: O Hyper m=1: 4d N = 1 SUSYc=0: O→→O Chiral m=2: 2d(0,2)c=1 : O Fermi **m=3:** $0d \mathcal{N} = 1$ **SUSY** $C=0: \bigcirc \bigcirc \bigcirc \bigcirc$ Chiral c=1: ○→→○ Conjugate Fermi

Superpotentials (Interactions)

• A cycle *C* is a path that begins and end at the same node subject to identification

$$A^{(c)}_{ij}B^{(d)}_{ji}\sim (-1)^{cd}B^{(d)}_{ji}A^{(c)}_{ij}$$

Superpotential W is a linear combination of cycles of degree m − 1.

Superpotentials (Interactions)

• A cycle *C* is a path that begins and end at the same node subject to identification

$$A^{(c)}_{ij}B^{(d)}_{ji}\sim (-1)^{cd}B^{(d)}_{ji}A^{(c)}_{ij}$$

Superpotential W is a linear combination of cycles of degree m − 1.

Path

The Degree Constraint

- m=0: No Superpotential
- m=2:

 $W = \Lambda_a J_a(X) + \bar{\Lambda}_a E_a(X)$

•
$$m=1: W = W(X)$$

• m =3:

$$W = \Lambda_a J_a(X) + \bar{\Lambda}_a \bar{\Lambda}_b H_{ab}(X)$$

Constraints due to SUSY: Kontsevich Bracket

• Kontsevich bracket is defined to be

$$\{f,g\} = \sum_{\Phi} \frac{\partial f}{\partial \Phi} \frac{\partial g}{\partial \bar{\Phi}} - (-1)^{s(\Phi)} \frac{\partial f}{\partial \bar{\Phi}} \frac{\partial g}{\partial \Phi}$$

• Superpotential is required to have vanishing Kontsevich bracket with itself.

$$\{W,W\}=0$$

Constraints due to SUSY: Kontsevich Bracket

• Kontsevich bracket is defined to be

$$\{f,g\} = \sum_{\Phi} \frac{\partial f}{\partial \Phi} \frac{\partial g}{\partial \bar{\Phi}} - (-1)^{s(\Phi)} \frac{\partial f}{\partial \bar{\Phi}} \frac{\partial g}{\partial \Phi}$$

• Superpotential is required to have vanishing Kontsevich bracket with itself.

$$\{W,W\}=0$$

Constraint for small m

- m=0: No superpotential
- **m=2**: $\sum_{a} \operatorname{tr} E_{a} J_{a} = 0$

- m=1: Trivial
- **m =3**: $\sum_b H_{ab} J_b = 0$

Ranks and Anomaly Cancellation

• The ranks of gauge groups satisfy the anomaly cancellation equations.

$$(1+(-1)^m)N_i = \sum_j \sum_{c=0}^m (-1)^{m-c} n_{ji}^{(c)} N_j$$

Where $n_{ji}^{(c)}$ is the number of arrows of degree *c* going from node *j* to *i*.

• We will restrict to the case where all nodes have the same rank.

m-Dimers: Connecting Geometry and QFT

The Problem:

We want a dictionary between:

- The worldvolume QFT described as an *m*-graded quiver with superpotential.
- The probed Calabi-Yau singularity described by its realization as a GLSM or equivalently as a convex polygon in Z^{m+1} i.e the toric diagram.

Brane Tilings and Brane Brick Models

The brane configuration we are chasing is T-dual to another one that involves D-branes suspended from NS5-branes. This configuration directly encodes the field theory.

D3-Branes and CY3 [Franco, Hanany et al (2006)]

D1-Branes and CY4 [Franco, Lee et al (2015)]

An *m*-Dimer is a tessellation of \mathbb{T}^{m+1} that connects a CY_{m+2} with the corresponding SUSY field theory.

m-dimer	Gauge Theory
Codimension-0 face (brick)	Gauge group
Codimension-1 face of	Degree <i>c</i> field in the
degree <i>c</i> between	bifundamental representation
bricks <i>i</i> and <i>j</i>	of nodes <i>i</i> and <i>j</i>
	(adjoint for $i = j$)
Codimension-2 face	A monomial in the superpotential

They generalize brane tilings and brane brick models and can be defined for any m.

Periodic Quivers

The dual to the dimer model is a quiver embedded on \mathbb{T}^{m+1} called a periodic quiver.

 $m=1: F_0$

m=2: $\mathbb{C}^4 / \mathbb{Z}_4$

An Infinite Family: $\mathbb{C}^{m+2}/\mathbb{Z}_{m+2}$ [Closset, Franco, Guo, AH (2018)]

- Has a global SU(m+2) symmetry.
- Arrows in quiver fall in representations of this SU(m+2).
- There are m + 2 nodes.
- Between *i* and *i* + *k* there is an arrow Φ^(k-1;k)_{i,i+k}.
 It has degree *k* 1 and transforms in the representation with *k* antisymmetric indices.
- Potential is

$$W = \sum_{i+j+k < m+2} \Phi_{i,i+j}^{(j-1;j)} \Phi_{i+j,i+j+k}^{(k-1;k)} \bar{\Phi}_{i+j+k,i}^{(m+1-j-k;m+2-j-k)}$$

Perfect Matchings

- A perfect matching *p* of an *m*-dimer is a collection of fields satisfying two simple properties
 - For every field Φ , either $\Phi \in p$ or $\overline{\Phi} \in p$ but not both.
 - *p* contains exactly one field from each term in the superpotential *W*.
- A perfect matching is determined entirely by chiral fields in it.
- Due to special structure of dimer models, they can be mapped to GLSM fields parameterizing the moduli space of the corresponding theory.
- Their intersections of fields in *p* with the fundamental cycles of the torus, determine the position of corresponding GLSM in the toric diagram.

Product of Dimer Models

Franco, AH (2020)

The Algorithm

- Products is an algorithm that takes as inputs
 - An *m*-dimer *P* with a perfect matching *p* of *P*.
 - An *n*-dimer Q with a perfect matching q of Q.
- The output is an n + m + 1-dimer $P_p \times Q_q$.
- This allows us to construct complicated geometries starting from simple ones.

Periodic Quivers

An example: F_0

$\textbf{Conifold} \, \times \, \textbf{Conifold}$

$\textbf{Conifold} \times \textbf{Conifold}$

$0d \mathcal{N} = 1$: Conifold \times Conifold

- 13 chiral and 19 fermi fields.
- 56 quartic terms descending from superpotentials of parent conifolds.
- 32 additional cubic and 36 additional quintic terms.

Connected Sums?

- Products can be regarded as an algorithm for constructing an graph embedded on X × Y given graphs embedded on X and Y.
- Simplest example: Quiver blocks are graphs on $\mathbb{T}^{m+1} \times I$

$$\mathcal{Q}_p^{(m+1)} = \mathcal{Q}_p^{(m)} \times \bigwedge_{\texttt{L}}^{\textcircled{\bullet}}$$

- Periodic quivers can be formed by gluing a number of quiver block for a given quiver Q but possibly different perfect matching p along their boundaries.
- Maybe such operations are part of a large class of "surgeries" on dimer models.

Topological B-model

Aspinwall, Katz (2004); Closset, Franco, Guo, AH (2018)

Topological B-model

- Topological B-model on a Calabi Yau m+2-fold X_{m+2} can be defined for any m ≥ 2.
- It is described by an *m*-graded quiver.
- Topological B-model can be formalized in terms of an exceptional collection *E_i* of sheafs on a resolution of *X_{m+2}*.
- The dictionary is as follows

B-Model	Graded Quiver	Sheaf Theory
Brane	Node <i>i</i>	Sheaf \mathcal{E}_i
Open String	$i \xrightarrow{(c)} j$	Generator of $Ext^{c+1}(\mathcal{E}_i,\mathcal{E}_j)$
Correlation function	Potential	Products m_k
"Supersymmetry"	$\{W,W\} = 0$	A_∞ relations on m_k

Conclusions and Outlook

- *m*-graded quivers for provide us a language for unified description of minimally supersymmetric theories across dimensions.
- This unified description helps us chart the space of theses theories and reveals some interesting relationships between theories in different dimensions.
- *m*-dimers facilitate the connections between Calabi-Yau
 m + 2-folds and the corresponding SUSY theory.
- For all *m* they can be realized as the configurations of B-branes in topological string theory.