Quantum Sheaf Cohomology for Toric Complete Intersections

Zhentao Lu

BiCMR and Beijing Institute of Technology

Aug 18, 2020

GLSMs - 2020

Introduction

- GLSM and quantum cohomology
- An informal definition

2 GLSM Style QSC and Correlators

- QSC for Toric Varieties
- QSC for Toric Complete Intersections

3 Concluding Remarks

GLSM and quantum cohomology An informal definition

Introduction

Zhentao Lu Quantum Sheaf Cohomology for Toric Complete Intersections

GLSM and quantum cohomology An informal definition

GLSM and quantum cohomology

GLSM and quantum cohomology An informal definition

Motivation: GLSM and quantum cohomology

- Twisted 2d GLSM, Witten (1993)
- (2,2) models and quantum cohomology: Batyrev (1993), Morrison-Plesser (1995), Szenes-Vergne (2004).
- (0,2) models and quantum sheaf cohomology (QSC): Adams-Basu-Sethi (2003), Katz-Sharpe (2006), McOrist-Melnikov (2008, 2009), Donagi et al. (2013, 2014).
- (0,2) mirror symmetry: Adams-Basu-Sethi (2003), Melnikov-Plesser (2011), Gu-Sharpe (2017).

GLSM and quantum cohomology An informal definition

An informal definition

Zhentao Lu Quantum Sheaf Cohomology for Toric Complete Intersections

GLSM and quantum cohomology An informal definition

Classical Sheaf Cohomology

- V : compact Kähler, dim V = n.
- \mathcal{E} : holomorphic vector bundle over V, with $\wedge^{\operatorname{top}} \mathcal{E}^* \cong K_V$, $c_2(\mathcal{E}) = c_2(T_V)$.
- The classical sheaf cohomology ring

$$H^*_{\mathcal{E}}(V) := \oplus_{p,q} H^q(V, \wedge^p \mathcal{E}^*),$$

with the product:

$$H^q(V, \wedge^p \mathcal{E}^*) \times H^{q'}(V, \wedge^{p'} \mathcal{E}^*) \xrightarrow{\cup} H^{q+q'}(V, \wedge^{p+p'} \mathcal{E}^*).$$

• In the (2,2) case, we have $\mathcal{E} = T_V$.

GLSM and quantum cohomology An informal definition

Classical Correlators

- The isomorphism $\wedge^{\operatorname{top}} \mathcal{E}^* \cong K_V$ induces $\phi: H^n(V, \wedge^{\operatorname{top}} \mathcal{E}^*) \cong H^n(V, K_V) \xrightarrow{\int_V} \mathbb{C}.$
- This enables us to define the classical correlator

$$\langle \sigma_1, ..., \sigma_s \rangle_0 := \bar{\phi}(\sigma_1 \cdot \sigma_2 \cdots \sigma_s),$$

for $\sigma_i \in H^q(V, \wedge^q \mathcal{E}^*)$.

• In the (2,2) case: Dolbeault cohomology, Hodge theory.

GLSM and quantum cohomology An informal definition

Quantum Correlators

For each effective curve β in H₂(V, Z), one constructs a "suitable" moduli space of maps

$$f: \mathbb{P}^1 \to V, [f(\mathbb{P}^1)] = \beta.$$

• The quantum correlator is:

$$\langle \sigma_1,...,\sigma_s \rangle := \sum_{eta} \langle ilde{\sigma}_1,..., ilde{\sigma}_s
angle_{eta} q^{eta}.$$

- NLSM:
 - M_{β} Kontsevich moduli space of stable maps for the (2,2) case.
 - Difficulties for (0,2) case, Katz-Sharpe (2006).

GLSM and quantum cohomology An informal definition

Quantum Sheaf Cohomology

- Case by case, it is expected that induced sheaves can be constructed on GLSM style moduli spaces.
- Existing (0,2) GLSM theories: toric varieties and toric complete intersections, Grassmannians, flag varieties, toric stacks.
- Donagi et al. (2013, 2014) for toric case.
- I propose to extend the construction to toric complete intersections.

QSC for Toric Varieties QSC for Toric Complete Intersections

GLSM Style QSC and Correlators

QSC for Toric Varieties QSC for Toric Complete Intersections

QSC for Toric Varieties

Zhentao Lu Quantum Sheaf Cohomology for Toric Complete Intersections

QSC for Toric Varieties QSC for Toric Complete Intersections

The Toric Setting

- Donagi, Guffin, Katz, and Sharpe (2013, 2014)
- V: smooth projective toric variety, dim V = n.
- Toric fan Σ , cones $\Sigma(k)$.
- Each ray $i \in \Sigma(1)$, corresponds to a toric divisor D_i .
- Cox ring $[x_1, ..., x_d]$, homogeneous coordinate ring.
- Example: $\mathbb{P}^1 \times \mathbb{P}^1$. v_2 $v_3 \longleftrightarrow v_1$

QSC for Toric Varieties QSC for Toric Complete Intersections

Toric Euler Sequence

• The cotangent bundle Ω_V fits in the toric Euler sequence

$$0 o \Omega_V o \oplus_{\mathfrak{l} \in \Sigma(1)} \mathcal{O}(-D_i) \xrightarrow{E_0} \mathcal{O} \otimes W o 0,$$

where $W \cong H^2(V, \mathbb{C}) \cong \mathbb{C}^r$.

• For \mathbb{P}^n , this reduces to

$$0 o \Omega_{\mathbb{P}^n} o \mathcal{O}(-1)^{\oplus (n+1)} \xrightarrow{E_0} \mathcal{O} o 0.$$

• \mathcal{E}^* is defined by the short exact sequence

$$0 o \mathcal{E}^* o \oplus \mathcal{O}(-D_i) \xrightarrow{E} \mathcal{O} \otimes W o 0.$$

QSC for Toric Varieties QSC for Toric Complete Intersections

The classical sheaf cohomology

• The classical sheaf cohomology is

$$H^*_{\mathcal{E}}(V) \cong \operatorname{Sym}^* W/SR(V, \mathcal{E}),$$

where $SR(V, \mathcal{E})$ is the Stanley-Reisner ideal for \mathcal{E} we define next.

• Special case: when $\mathcal{E} = T_V$, $E_0 = \sum_i x_i [D_i]$. let $\sigma_i = [D_i]$,

$$SR(V, T_V) = \langle \prod_{i \in K} \sigma_i | K \text{ is a primitive collection} \rangle.$$

QSC for Toric Varieties QSC for Toric Complete Intersections

The classical sheaf cohomology

• General case:

 $E \in \operatorname{Hom}(\oplus \mathcal{O}(-D_i), \mathcal{O} \otimes W) \cong H^0(\oplus \mathcal{O}(D_i)) \otimes W.$

$$E_i = \sum_{\{j \mid D_j \sim D_i\}} a_{ij} x_j$$

Define $Q_c = \det(a_{ij})$, where $c = [D_i]$, and define

$$Q_{\mathcal{K}}=\prod_{c\in[\mathcal{K}]}Q_c.$$

Then we have

 $SR(V, \mathcal{E}) = \langle Q_K | K \text{ is a primitive collection} \rangle.$

• When *E* specializes to E_0 with $E_{0,i} = \sigma_i x_i$, we recover

 $SR(V, T_V) = \langle \prod_{i \in K} \sigma_i | K \text{ is a primitive collection} \rangle.$

QSC for Toric Varieties QSC for Toric Complete Intersections

The QSC Ring

Theorem (Donagi et al., 2014)

The QSC Ring takes the form

$$QH^*_{\mathcal{E}}(V) = (\operatorname{Sym}^* W \otimes \mathbb{C}[q^{\beta}])/QSR(X, \mathcal{E}), ext{ where }$$

$$QSR(X,\mathcal{E}) = \langle Q_K - q^{\beta_K} \prod_{c \in [K^-]} Q_c^{-d_c^{\beta_K}} | K \text{ is a primitive collection} \rangle.$$

Notations: β_K is an effective curve corresponds to K.

$$d_i^{\beta} = \langle \beta, D_i \rangle, [K^-] = \{i \in \Sigma(1) | d_i^{\beta_K} < 0\}.$$

Examples

 Take a basis β₁,..., β_r ∈ H₂(V, ℤ): q^{β_j} --→ q_j ∈ ℂ*. QSR(V, ε) --→ QSC Relations (QSCR). Example: For Hirzebruch surface F_n, the QSCR is

$$\begin{cases} \sigma_1^2 = q_1 \sigma_2^n \\ \sigma_2(\sigma_2 + n\sigma_1) = q_2 \end{cases} \begin{cases} \sigma_1^2 \sigma_2^{-n} = q_1 \\ \sigma_2(\sigma_2 + n\sigma_1) = q_2 \end{cases}$$

QSC for Toric Varieties

QSC for Toric Varieties QSC for Toric Complete Intersections

The Quantum Correlator Formula

Theorem (L, arXiv:1511.09158)

Let V be a smooth, projective, nef-Fano toric variety, and \mathcal{E} be a small deformation of the tangent bundle, then for $\sigma_i \in W \cong H^1(\mathcal{E}^*)$ and small $q = (q_1, ..., q_r)$, we have the correlator formula

$$\langle \sigma_1, ..., \sigma_s \rangle = \sum \frac{\sigma_1 \cdots \sigma_s}{\prod_c Q_c} \frac{\prod_j \tilde{v}_j}{\det(\tilde{v}_{j,k})},$$

where the summation is taken over the solutions to the QSC relations $\{\tilde{v}_j = q_j, j = 1, .., r\}$, with $\tilde{v}_j = \prod_c Q_c^{d_c^{\beta_j}} \in \text{Sym}^* W$.

Remark: Conjectured by McOrist-Melnikov (2008).

QSC for Toric Complete Intersections

QSC for Toric Varieties QSC for Toric Complete Intersections

The (2,2) case motivation

• (2,2) case (Intersection theory):

$$(D_1|_X, ..., D_s|_X)_X = (D_1, ..., D_s, [X])_V.$$

Let X be a toric complete intersection in V and E_X be a deformation of the tangent bundle T_X.
 Interest: H^q(X, ∧^pE^{*}_X), correlators.

For the toric part of $H^1(X, \mathcal{E}^*_X)$, we expect that the classical correlator can be computed by the following Sheaf COhomology REstriction (SCORE) formula:

$$\langle \sigma_1, ..., \sigma_s \rangle_{0, X} = \langle \sigma_1, ..., \sigma_s, [\mathcal{E}] \rangle_{0, V}$$

QSC for Toric Varieties QSC for Toric Complete Intersections

SCORE formula

Theorem (L)

Let X be a smooth toric complete intersection in V defined by $f_k \in H^0(V, \mathcal{O}(H_k)), k = 1, ..., m$ and \mathcal{E}_X^* be a deformation of the cotangent bundle Ω_X defined by the middle cohomology of

$$\oplus \mathcal{O}_X(-H_k) \xrightarrow{J} \oplus \mathcal{O}_X(-D_i) \xrightarrow{E} \mathcal{O}_X \otimes W,$$

where $J = (J_1, ..., J_m)$ and

 $E \circ J_k = \gamma_k \cdot f_k \in \operatorname{Hom}(\mathcal{O}_V(-H_k), \mathcal{O}_V \otimes W).$

Then we have a SCORE formula:

$$\langle \sigma_1, \sigma_2, ..., \sigma_s \rangle_{0, \mathcal{X}} = \langle \sigma_1, \sigma_2, ..., \sigma_s, \gamma_1, ..., \gamma_m \rangle_{0, \mathcal{V}}.$$

QSC for Toric Varieties QSC for Toric Complete Intersections

Description of the bundle \mathcal{E}_X^*

• Hypersurface case: $X \subset V$, \mathcal{E}_X^* is the middle cohomology of

$$\mathcal{O}_X(-X) \xrightarrow{J} \oplus \mathcal{O}_X(-D_i) \xrightarrow{E} \mathcal{O}_X \otimes W$$
, or

$$0 \to \mathcal{O}_X(-X) \xrightarrow{J} \mathcal{E}_V^*|_X \to \mathcal{E}_X^* \to 0.$$

• Canonically $\wedge^n \mathcal{E}^*_V(X)|_X \cong \wedge^{n-1} \mathcal{E}^*_X$, hence

$$0 \to \wedge^n \mathcal{E}_V^* \to \wedge^n \mathcal{E}_V^*(X) \to \wedge^{n-1} \mathcal{E}_X^* \to 0.$$

- (This is $0 \to \mathcal{O}_V \to \mathcal{O}_V(X) \to \mathcal{O}_V(X)|_X \to 0$ tensoring $\wedge^n \mathcal{E}_V^*$.)
- The (2,2) case: $J = (\partial f)$, $E = E_0$, $\mathcal{E}^*_X = \Omega_X$, and we have

$$0 o \Omega^n_V o \Omega^n_V(X) \xrightarrow{P.R.} \Omega^{n-1}_X o 0.$$

QSC for Toric Varieties QSC for Toric Complete Intersections

Sequences for cohomology computation

QSC for Toric Varieties QSC for Toric Complete Intersections

Technicality(1)

Zhentao Lu Quantum Sheaf Cohomology for Toric Complete Intersections

QSC for Toric Varieties QSC for Toric Complete Intersections

Technicality(2)

QSC for Toric Varieties QSC for Toric Complete Intersections

The classical sheaf cohomology $H^*_{\mathcal{E}}(X)^{\operatorname{toric}}$

• We would like to relate the map

$$H^1(\mathcal{E}^*_X) imes ... imes H^1(\mathcal{E}^*_X) o H^{n-1}(\wedge^{n-1}\mathcal{E}^*_X)\cong\mathbb{C}$$

to the toric ambient spaces maps:

where $S_1(X)|_X$ is the kernel of

$$\oplus \mathcal{O}_X(-D_i)\otimes \operatorname{Sym}^{n-1}W \to \mathcal{O}_X(X)\otimes \operatorname{Sym}^n W.$$

QSC for Toric Varieties QSC for Toric Complete Intersections

SCORE formula

Theorem (L)

Let X be a smooth toric complete intersection in V defined by $f_k \in H^0(V, \mathcal{O}(H_k)), k = 1, ..., m$ and \mathcal{E}_X^* be a deformation of the cotangent bundle Ω_X defined by the middle cohomology of

$$\oplus \mathcal{O}_X(-H_k) \xrightarrow{J} \oplus \mathcal{O}_X(-D_i) \xrightarrow{E} \mathcal{O}_X \otimes W,$$

where $J = (J_1, ..., J_m)$ and

 $E \circ J_k = \gamma_k \cdot f_k \in \operatorname{Hom}(\mathcal{O}_V(-H_k), \mathcal{O}_V \otimes W).$

Then we have a SCORE formula:

$$\langle \sigma_1, \sigma_2, ..., \sigma_s \rangle_{0, \mathcal{X}} = \langle \sigma_1, \sigma_2, ..., \sigma_s, \gamma_1, ..., \gamma_m \rangle_{0, \mathcal{V}}.$$

QSC for Toric Varieties QSC for Toric Complete Intersections

Morrison-Plesser moduli spaces

- Morrison-Plesser (1995), Batyrev-Materov (2002).
- Quasimap: Ciocan-Fontanine et al. (2014)
 - V_{β} : toric

 $X_eta \subset V_eta$: not necessarily toric complete intersection.

• Induced sheaf: *E*, *J*.

QSC for Toric Varieties QSC for Toric Complete Intersections

An Example

•
$$V = \mathbb{P}^2 : [x_0 : x_1 : x_2], \ \beta = [D_1], \ X = (f), \ f = x_0^3 + x_1^3 + x_2^3$$

• $\phi : \mathbb{P}^1 \longrightarrow V$
 $[t_0 : t_1] \mapsto [a_0t_0 + a_1t_1 : b_0t_0 + b_1t_1 : c_0t_0 + c_1t_1]$
 $V_\beta = \mathbb{P}^5 : [a_0 : a_1 : b_0 : b_1 : c_0 : c_1]$
• $\phi : \mathbb{P}^1 \longrightarrow X$
 $f \circ \phi : (a_0t_0 + a_1t_1)^3 + (b_0t_0 + b_1t_1)^3 + (c_0t_0 + c_1t_1)^3 = 0$
 $\Rightarrow \begin{cases} a_0^3 + b_0^3 + c_0^3 = 0 \\ a_0^2a_1 + b_0^2b_1 + c_0^2c_1 = 0 \\ a_0a_1^2 + b_0b_1^2 + c_0c_1^2 = 0 \\ a_1^3 + b_1^3 + c_1^3 = 0 \end{cases}$
 X_β is NOT a complete intersection.

QSC for Toric Varieties QSC for Toric Complete Intersections

Quantum restrictions

• Definition of the quantum correlator:

$$\langle \sigma_1,...,\sigma_s
angle_X:=\sum_eta(-1)^eta\langle\sigma_1,...,\sigma_s
angle_{eta,X}q^eta$$

• Naive quantum restriction:

$$\langle \sigma_1, ..., \sigma_s \rangle_X = \sum_{\beta} (-1)^{\beta} \langle \sigma_1, ..., \sigma_s, \gamma^{n_{\beta}} \rangle_{\beta, V}$$

• Calabi-Yau hypersurface case (McOrist-Melnikov):

$$\langle \sigma_1, ..., \sigma_s \rangle_X := \langle \sigma_1, ..., \sigma_s, \frac{\gamma}{1+\gamma} \rangle_V$$

Concluding Remarks

Concluding Remarks

- QSC helps us to compute correlators in geometric settings.
- There are both special cases and general constructions "ready" to be carried out.
- NLSM style QSC is yet to be constructed.
- Higher rank bundles and (0,2) heterotic mirror symmetry.
- Frobenius structures.
- Please send comments and suggestions to zhentao@sas.upenn.edu