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In this talk:

• Review of GLSMs for ordinary Grassmannians

• The symplectic Grassmannians and its GLSM realization

• Discussion of phases of this GLSM
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Review of GLSMs for Grassmannians

[Witten, hep-th/9301042 & hep-th/9312104]

The GLSM for the Grassmannian, G(k, n), is a two dimensional
N = 2 U(k) gauge theory with n fundamentals, Φa

i .

In the infrared, for nonzero FI parameter r, vanishing scalar
potential forces

1

e2
Db
a =

n∑
i=1

φ̄iaφ
b
i − rδba = 0

- For r � 0, {D = 0} defines orthonormal conditions for k
vectors in Cn, so the space of classical vacua is G(k, n).

- For r � 0, only Coulomb vacua.
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Review of GLSMs for Grassmannians

[Morrison & Plesser, hep-th/9412236; Hori & Tong, hep-th/0609032]

Coulomb branch:

U(k) Higgsed to U(1)k, diagonal σ survive.

Excluded locus:

σa 6= 0, σa 6= σb if a 6= b.

One-loop twisted effective superpotential:

W̃eff =− t
k∑
a=1

Σa −
n∑
i=1

k∑
c=1

ρaicΣa

[
ln
(
ρbicΣb

)
− 1
]

−
∑
µ6=ν

αaµνΣa

[
ln
(
αbµνΣb

)
− 1
]

with ρaic = δac and αaµν = −δaµ + δaν .
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Review of GLSMs for Grassmannians

Chiral ring relations:

exp

(
∂W̃eff

∂σa

)
= 1 ⇒ σna = (−)k−1q

[Witten, hep-th/9312104; Morrison & Plesser, hep-th/9412236]

These chiral ring relations imply the quantum cohomology ring
relations of G(k, n). The σa’s are interpreted as Chern roots of S∗,
where S is the tautological bundle:

0 S V Q 0

Next let us consider the symplectic Grassmannians ...
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Symplectic Grassmannians

Ordinary Grassmannians can be described mathematically as cosets
SL(n,C)/P , and as they have global symmetry SU(n), are called
type A Grassmannians.

There are also analogous homogeneous spaces of the form
SO(2n+ 1,C)/P , Sp(2n,C)/P and SO(2n,C)/P , called
Grassmannians of type B, C, D.

In this talk, let us focus on type C Grassmannians, which are
cosets Sp(2n,C)/P , and are called the Symplectic Grassmannians.

Definition

Given a symplectic form ω in C2n, the symplectic Grassmannian
SG(k, 2n) is the space parameterizing k-dim’l (k ≤ n) subspaces
in C2n which are isotropic with respect to ω. When k is maximal,
it is also called the Lagrangian Grassmannian.
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GLSM for Symplectic Grassmannian
Alternatively,

Definition

SG(k, 2n) is the zero locus in G(k, 2n) of a global section of the
vector bundle ∧2(S∗).

GLSM description:
The GLSM for SG(k, 2n) is an U(k) gauge theory defined by

- 2n chiral multiplets Φa
±i in the fundamental representation V ,

- 1 chiral multiplet Pab in the anti-symmetric tensor
representation ∧2V ∗,

with superpotential

W =
∑
α,β,a,b

PabΦ
a
αΦb

βω
αβ =

∑
i,a,b

PabΦ
a
iΦ

b
−i, for ω =

[
0 1
−1 0

]
.
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GLSM for Symplectic Grassmannian
In the infrared, the vacuum configuration on the Higgs branch
(r 6= 0 and σ = 0) is determined by the scalar potential.

First, vanishing potential requires

1

e2
Db
a =

n∑
i=1

(
φ̄iaφ

b
i + φ̄−ia φ

b
−i

)
− 2p̄bcpac − rδba = 0,

F a±i =
∂W

∂φa±i
= 0, F ab =

∂W

∂pab
= 0.

When r � 0, D-term conditions determine the ambient space to
be G(k, 2n). F -term conditions restrict to subspace satisfying the
following isotropy condition

n∑
i=1

(
φai φ

b
−i − φbiφa−i

)
= 0.
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Global symmetries

Recall: the symplectic Grassmannian SG(k, 2n) can also be
defined as the coset

Sp(2n,C)/P.

Correspondingly, its GLSM should have the global symmetry
Sp(2n).

Check:

- Rotations of 2n chiral fields ⇒ U(2n).

- Invariant of the superpotential requires to preserve the
symplectic form ⇒ Sp(2n,C).

Therefore, the global symmetry is Sp(2n).
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GLSM for Symplectic Grassmannian
What about the r � 0 phase?

The simpler case is when k is odd. Note that pab is antisymmetric,
we can diagonalize it in terms of 2× 2 blocks.

pab =


0 ∗ · · · 0
−∗ 0 · · · 0

...
...

. . .
...

0 0 · · · 0


The last entry corresponds to following diagonal D-term:

1

e2
Dk
k =

n∑
i=1

(∣∣∣φki ∣∣∣2 +
∣∣∣φk−i∣∣∣2)− r = 0.

There are no classical Higgs vacua in r � 0 phase when k is odd;
pure Coulomb branch
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GLSM for Symplectic Grassmannian

What about the r � 0 phase?

For k even, there is a nontrivial Higgs branch.

For example, when k = 2, U(2) Higgsed to SU(2) due to 〈P12〉
and so this phase is actually an SU(2) gauge theory with 2n
fundamentals.

This theory has been well studied and the Witten index for this
theory has been given:

1

2
(2n− 2) = n− 1.

[Hori & Tong, hep-th/0609032;

Benini, Eager, Hori & Tachikawa, arXiv:1308.4896[hep-th]]

Later we will see this is consistent with Witten indices.
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GLSM for Symplectic Grassmannian

On the Coulomb branch, the generic coordinates σa’s should satisfy

σa 6= 0, σa ± σb 6= 0 if a 6= b.

The effective twisted superpotential is

W̃eff =− t
n∑
a=1

Σa −
2n∑
i=1

n∑
a,b=1

ρbiaΣb

[
ln

(
n∑
b=1

ρciaΣc

)
− 1

]

−
n∑

µ>ν=1

n∑
a=1

ρaµνΣa

[
ln

(
n∑
b=1

pbµνΣb

)
− 1

]

−
n∑

µ6=ν=1

n∑
a=1

αaµνΣa

[
ln

(
n∑
b=1

αbµνΣb

)
− 1

]
,

with ρaib = δab , ρaµν = −δaµ − δaν and αaµν = −δaµ + δaν .
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GLSM for Symplectic Grassmannian

Chiral ring relations:

exp

(
∂W̃

∂σa

)
= 1 ⇒ q

∏
b 6=a

(σa + σb) = σ2n
a

- When k = n, we can show that these chiral ring relations do
match the quantum cohomology ring relations. Explain

[Buch, Kresch & Tamvakis, arXiv:0809.4966[math-AG]]

- When k < n, we have checked in special cases that these
chiral ring relations do reproduce the quantum cohomology
ring relations.

- When k is odd, it can be argued that the number of Coulomb
vacua matches the χ(SG(k, 2n)) = 2k

(
n
k

)
. Explain

- When k is even, several examples have been checked and
results are consistent with Witten indices. Explain
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Calabi-Yau conditions

Known result in math:
The intersection of the Plücker embedding of SG(k, 2n) with a
hypersurface of degree 2n− k + 1 is a Calabi-Yau.

In GLSM, the Calabi-Yau conditions are that the sum of the
charges under any U(1) subgroup of the gauge group vanishes.

In the GLSM for SG(k, 2n), under an U(1) ⊂ U(k),

- 2n chirals in the U(k) fundamental V contribute 2n,

- 1 chiral in ∧2V ∗ contributes −(k − 1),

so the sum of U(1) charges is 2n− k + 1.
After the Plücker embedding of SG(k, 2n), the sum of the same
U(1) charges is still 2n− k + 1.

Therefore, to build a Calabi-Yau, we need to intersect the image of
SG(k, 2n) with a hypersurface of degree 2n− k + 1.
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Outline of the GLSM for Orthogonal Grassmannian

Definition

The orthogonal Grassmannian OG(k, n) is the space
parameterizing the k-dim’l subspaces in Cn which are isotropic
w.r.t. a given symmetric bilinear form g.

The GLSM for OG(k, n) is an U(k) gauge theory having:

- n chiral multiplets Φa
α in the fundamental representation V

- 1 chiral multiplet Qab in the symmetric tensor representation
Sym2V ∗

with superpotential

W =
∑
α,β,a,b

QabΦ
a
αΦb

βg
αβ.
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Additional results

- Equivariant quantum cohomology rings can also be duplicated
from physics

- Orthogonal Grassmannians OG(k, 2n) and OG(k, 2n+ 1)

- Mirrors of SG and OG

- Quantum K-theory for symplectic Grassmannians
[Gu, Mihalcea, Sharpe, HZ, arXiv:2008.04909 [hep-th]]

Future work

- Isotropic flag varieties, including G2 flags [In progress]
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Thank you!
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Quantum cohomology ring relations

Consider SG(n, 2n) with n = 2k + 1 odd. We can rewrite the
chiral ring relations as following:

qσ2k
a + qe2(σ)σ2k−2

a + · · ·+ qe2k−2(σ)σ2
a + qe2k(σ) = σ4k+2

a ,

where ei(σ) is the i-th elementary symmetric polynomial.

Since the ei(σ) are Weyl invariant, the ei(σ) are constant on Weyl
orbits. Rewrite the above equation as

P (σ2
a) ≡ (σ2

a)
2k+1 − q(σ2

a)
k − · · · − qe2k−2(σ)σ2

a − qe2k(σ)

= 0,

Then {σ2
a} should satisfy relations determined by the cofficients of

P (σ2
a) according to Vieta’s formula.

18 / 23



Quantum cohomology ring relations

Vieta’s formula tell us that for the polynomial:

P (x) = (x)2k+1 − q(x)k − · · · − qe2k−2(σ)x2 − qe2k(σ),

≡ (x− x1)(x− x2) · · · (x− x2k+1),

then its (2k + 1) roots {xa} should satisfy following relations∑
1≤a1<···<a`≤n

xa1 · · ·xa` = (−)`−1e2`−n−1(σ)q,

for ` ≤ n = 2k + 1 and we’ve used ei = 0 for i < 0 and e0 = 1.

xa → σ2
a ⇒ It recovers the quantum cohomology ring

relations for SG(n, 2n) when k = 2k+1.

[Buch, Kresch & Tamvakis, arXiv:0809.4966[math-AG]]

Similar analysis applies to SG(n, 2n) for n even cases.

Back
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Witten indices for SG(k, 2n) with k odd

For k odd, as discussed before, there are only the geometric phase
and the pure Coulomb branch phase. Therefore, the number of
Coulomb vacua should match the Euler characteristic of
SG(k, 2n):

2k
(
n

k

)
.

The chiral ring relations,

q
∏
b6=a

(σa + σb) = σ2n
a ,

which can also be rewritten as

σ2n
a − q

[
σk−1
a + e2(σ)σk−3

a + · · ·+ ek−1(σ)
]

= 0.
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Witten indices for SG(k, 2n) with k odd

Since k is odd and we count solutions on the excluded locus

σa 6= 0, σa 6= ±σb for a 6= b,

there is a Z2-symmetry among solutions:

If {σ1, . . . , σk} is one solution, then
{−σ1, . . . ,−σk} is another solution.

Further, all solutions satisfy the same equaitons due to the Weyl
symmetry. So we can count the number of solutions as following:

2n(2n− 2) · · · (2n− 2k + 2)

k!
= 2k

(
n

k

)
.

Go Back
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Witten indices for SG(k, 2n) with k even

For k even, the r � 0 phase is a mixed Higgs-Coulomb branch, so
the total Witten index consist of contributions from both Higgs
and Coulomb branches. This total number should match the Euler
characteristic of SG(k, 2n).

Let us check in the k = 2 case. On the Coulomb branch, when
k = 2, the chiral ring relations are

q(σ1 + σ2) = σ2n
1 , q(σ1 + σ2) = σ2n

2 ,

which imply σ2n
1 = σ2n

2 . Exclude σ1 = ±σ2, there are (2n− 2)
relations between σ1 and σ2. Then the chiral ring relation will
reduce to an equation of degree (2n− 1), which has (2n− 1)
solutions.
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Witten indices for SG(k, 2n) with k even

Therefore, the number of Coulomb vacua is

1

2
(2n− 2)(2n− 1) = (2n− 1)(n− 1).

The Higgs branch in r � 0 is a SU(2) gauge theory with 2n
fundamentals, which has Witten index (n− 1).

So the total number is

(n− 1) + (2n− 1)(n− 1) = 22

(
n

2

)
,

which matches the Euler characteristic of SG(2, 2n).

Go Back
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