GLSMs for Symplectic Grassmannians

Hao Zou
Department of Physics, Virginia Tech

Joint work with Wei Gu and Eric Sharpe, arXiv:2008.02281

In this talk:

- Review of GLSMs for ordinary Grassmannians
- The symplectic Grassmannians and its GLSM realization
- Discussion of phases of this GLSM

Review of GLSMs for Grassmannians

[Witten, hep-th/9301042 \& hep-th/9312104]
The GLSM for the Grassmannian, $G(k, n)$, is a two dimensional $\mathcal{N}=2 U(k)$ gauge theory with n fundamentals, Φ_{i}^{a}.

In the infrared, for nonzero FI parameter r, vanishing scalar potential forces

$$
\frac{1}{e^{2}} D_{a}^{b}=\sum_{i=1}^{n} \bar{\phi}_{a}^{i} \phi_{i}^{b}-r \delta_{a}^{b}=0
$$

- For $r \gg 0,\{D=0\}$ defines orthonormal conditions for k vectors in \mathbb{C}^{n}, so the space of classical vacua is $G(k, n)$.
- For $r \ll 0$, only Coulomb vacua.

Review of GLSMs for Grassmannians

[Morrison \& Plesser, hep-th/9412236; Hori \& Tong, hep-th/0609032]
Coulomb branch:

$$
U(k) \text { Higgsed to } U(1)^{k} \text {, diagonal } \sigma \text { survive. }
$$

Excluded locus:

$$
\sigma_{a} \neq 0, \quad \sigma_{a} \neq \sigma_{b} \quad \text { if } a \neq b
$$

One-loop twisted effective superpotential:

$$
\begin{aligned}
\widetilde{W}_{\text {eff }}=- & t \sum_{a=1}^{k} \Sigma_{a}-\sum_{i=1}^{n} \sum_{c=1}^{k} \rho_{i c}^{a} \Sigma_{a}\left[\ln \left(\rho_{i c}^{b} \Sigma_{b}\right)-1\right] \\
& -\sum_{\mu \neq \nu} \alpha_{\mu \nu}^{a} \Sigma_{a}\left[\ln \left(\alpha_{\mu \nu}^{b} \Sigma_{b}\right)-1\right]
\end{aligned}
$$

with $\rho_{i c}^{a}=\delta_{c}^{a}$ and $\alpha_{\mu \nu}^{a}=-\delta_{\mu}^{a}+\delta_{\nu}^{a}$.

Review of GLSMs for Grassmannians

Chiral ring relations:

$$
\exp \left(\frac{\partial \widetilde{W}_{\text {eff }}}{\partial \sigma_{a}}\right)=1 \quad \Rightarrow \quad \sigma_{a}^{n}=(-)^{k-1} q
$$

[Witten, hep-th/9312104; Morrison \& Plesser, hep-th/9412236]
These chiral ring relations imply the quantum cohomology ring relations of $G(k, n)$. The σ_{a} 's are interpreted as Chern roots of \mathcal{S}^{*}, where \mathcal{S} is the tautological bundle:

Review of GLSMs for Grassmannians

Chiral ring relations:

$$
\exp \left(\frac{\partial \widetilde{W}_{\text {eff }}}{\partial \sigma_{a}}\right)=1 \quad \Rightarrow \quad \sigma_{a}^{n}=(-)^{k-1} q
$$

[Witten, hep-th/9312104; Morrison \& Plesser, hep-th/9412236]
These chiral ring relations imply the quantum cohomology ring relations of $G(k, n)$. The σ_{a} 's are interpreted as Chern roots of \mathcal{S}^{*}, where \mathcal{S} is the tautological bundle:

Next let us consider the symplectic Grassmannians ...

Symplectic Grassmannians

Ordinary Grassmannians can be described mathematically as cosets $S L(n, \mathbb{C}) / P$, and as they have global symmetry $S U(n)$, are called type A Grassmannians.

There are also analogous homogeneous spaces of the form $S O(2 n+1, \mathbb{C}) / P, S p(2 n, \mathbb{C}) / P$ and $S O(2 n, \mathbb{C}) / P$, called Grassmannians of type B, C, D.

Symplectic Grassmannians

Ordinary Grassmannians can be described mathematically as cosets $S L(n, \mathbb{C}) / P$, and as they have global symmetry $S U(n)$, are called type A Grassmannians.

There are also analogous homogeneous spaces of the form $S O(2 n+1, \mathbb{C}) / P, S p(2 n, \mathbb{C}) / P$ and $S O(2 n, \mathbb{C}) / P$, called Grassmannians of type B, C, D.

In this talk, let us focus on type C Grassmannians, which are cosets $\operatorname{Sp}(2 n, \mathbb{C}) / P$, and are called the Symplectic Grassmannians.

Definition

Given a symplectic form ω in $\mathbb{C}^{2 n}$, the symplectic Grassmannian $S G(k, 2 n)$ is the space parameterizing k-dim'l $(k \leq n)$ subspaces in $\mathbb{C}^{2 n}$ which are isotropic with respect to ω. When k is maximal, it is also called the Lagrangian Grassmannian.

GLSM for Symplectic Grassmannian

Alternatively,

Definition

$S G(k, 2 n)$ is the zero locus in $G(k, 2 n)$ of a global section of the vector bundle $\wedge^{2}\left(\mathcal{S}^{*}\right)$.

GLSM for Symplectic Grassmannian

Alternatively,

Definition

$S G(k, 2 n)$ is the zero locus in $G(k, 2 n)$ of a global section of the vector bundle $\wedge^{2}\left(\mathcal{S}^{*}\right)$.

GLSM description:
The GLSM for $S G(k, 2 n)$ is an $U(k)$ gauge theory defined by

- $2 n$ chiral multiplets $\Phi_{ \pm i}^{a}$ in the fundamental representation V,
- 1 chiral multiplet $P_{a b}$ in the anti-symmetric tensor representation $\wedge^{2} V^{*}$,
with superpotential

$$
W=\sum_{\alpha, \beta, a, b} P_{a b} \Phi_{\alpha}^{a} \Phi_{\beta}^{b} \omega^{\alpha \beta}=\sum_{i, a, b} P_{a b} \Phi_{i}^{a} \Phi_{-i}^{b}, \quad \text { for } \quad \omega=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

GLSM for Symplectic Grassmannian

In the infrared, the vacuum configuration on the Higgs branch ($r \neq 0$ and $\sigma=0$) is determined by the scalar potential.

First, vanishing potential requires

$$
\begin{aligned}
\frac{1}{e^{2}} D_{a}^{b} & =\sum_{i=1}^{n}\left(\bar{\phi}_{a}^{i} \phi_{i}^{b}+\bar{\phi}_{a}^{-i} \phi_{-i}^{b}\right)-2 \bar{p}^{b c} p_{a c}-r \delta_{a}^{b}=0 \\
F_{ \pm i}^{a} & =\frac{\partial W}{\partial \phi_{ \pm i}^{a}}=0, \quad F^{a b}=\frac{\partial W}{\partial p_{a b}}=0
\end{aligned}
$$

When $r \gg 0, D$-term conditions determine the ambient space to be $G(k, 2 n)$. F-term conditions restrict to subspace satisfying the following isotropy condition

$$
\sum_{i=1}^{n}\left(\phi_{i}^{a} \phi_{-i}^{b}-\phi_{i}^{b} \phi_{-i}^{a}\right)=0
$$

Global symmetries

Recall: the symplectic Grassmannian $S G(k, 2 n)$ can also be defined as the coset

$$
S p(2 n, \mathbb{C}) / P
$$

Correspondingly, its GLSM should have the global symmetry $S p(2 n)$.

Global symmetries

Recall: the symplectic Grassmannian $S G(k, 2 n)$ can also be defined as the coset

$$
S p(2 n, \mathbb{C}) / P
$$

Correspondingly, its GLSM should have the global symmetry $S p(2 n)$.

Check:

- Rotations of $2 n$ chiral fields $\Rightarrow U(2 n)$.
- Invariant of the superpotential requires to preserve the symplectic form $\Rightarrow S p(2 n, \mathbb{C})$.
Therefore, the global symmetry is $S p(2 n)$.

GLSM for Symplectic Grassmannian

 What about the $r \ll 0$ phase?
GLSM for Symplectic Grassmannian

 What about the $r \ll 0$ phase?The simpler case is when k is odd.

GLSM for Symplectic Grassmannian

What about the $r \ll 0$ phase?
The simpler case is when k is odd. Note that $p_{a b}$ is antisymmetric, we can diagonalize it in terms of 2×2 blocks.

$$
p_{a b}=\left[\begin{array}{cccc}
0 & * & \cdots & 0 \\
-* & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

The last entry corresponds to following diagonal D-term:

$$
\frac{1}{e^{2}} D_{k}^{k}=\sum_{i=1}^{n}\left(\left|\phi_{i}^{k}\right|^{2}+\left|\phi_{-i}^{k}\right|^{2}\right)-r=0
$$

GLSM for Symplectic Grassmannian

What about the $r \ll 0$ phase?
The simpler case is when k is odd. Note that $p_{a b}$ is antisymmetric, we can diagonalize it in terms of 2×2 blocks.

$$
p_{a b}=\left[\begin{array}{cccc}
0 & * & \cdots & 0 \\
-* & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

The last entry corresponds to following diagonal D-term:

$$
\frac{1}{e^{2}} D_{k}^{k}=\sum_{i=1}^{n}\left(\left|\phi_{i}^{k}\right|^{2}+\left|\phi_{-i}^{k}\right|^{2}\right)-r=0
$$

There are no classical Higgs vacua in $r \ll 0$ phase when k is odd; pure Coulomb branch

GLSM for Symplectic Grassmannian

What about the $r \ll 0$ phase?
For k even, there is a nontrivial Higgs branch.

GLSM for Symplectic Grassmannian

What about the $r \ll 0$ phase?
For k even, there is a nontrivial Higgs branch.
For example, when $k=2, U(2)$ Higgsed to $S U(2)$ due to $\left\langle P_{12}\right\rangle$ and so this phase is actually an $S U(2)$ gauge theory with $2 n$ fundamentals.

This theory has been well studied and the Witten index for this theory has been given:

$$
\frac{1}{2}(2 n-2)=n-1
$$

[Hori \& Tong, hep-th/0609032;
Benini, Eager, Hori \& Tachikawa, arXiv:1308.4896[hep-th]]
Later we will see this is consistent with Witten indices.

GLSM for Symplectic Grassmannian

On the Coulomb branch, the generic coordinates σ_{a} 's should satisfy

$$
\sigma_{a} \neq 0, \quad \sigma_{a} \pm \sigma_{b} \neq 0 \quad \text { if } a \neq b
$$

The effective twisted superpotential is

$$
\begin{aligned}
\widetilde{W}_{\text {eff }}=- & t \sum_{a=1}^{n} \Sigma_{a}-\sum_{i=1}^{2 n} \sum_{a, b=1}^{n} \rho_{i a}^{b} \Sigma_{b}\left[\ln \left(\sum_{b=1}^{n} \rho_{i a}^{c} \Sigma_{c}\right)-1\right] \\
& -\sum_{\mu>\nu=1}^{n} \sum_{a=1}^{n} \rho_{\mu \nu}^{a} \Sigma_{a}\left[\ln \left(\sum_{b=1}^{n} p_{\mu \nu}^{b} \Sigma_{b}\right)-1\right] \\
& -\sum_{\mu \neq \nu=1}^{n} \sum_{a=1}^{n} \alpha_{\mu \nu}^{a} \Sigma_{a}\left[\ln \left(\sum_{b=1}^{n} \alpha_{\mu \nu}^{b} \Sigma_{b}\right)-1\right]
\end{aligned}
$$

with $\rho_{i b}^{a}=\delta_{b}^{a}, \rho_{\mu \nu}^{a}=-\delta_{\mu}^{a}-\delta_{\nu}^{a}$ and $\alpha_{\mu \nu}^{a}=-\delta_{\mu}^{a}+\delta_{\nu}^{a}$.

GLSM for Symplectic Grassmannian

Chiral ring relations:

$$
\exp \left(\frac{\partial \widetilde{W}}{\partial \sigma_{a}}\right)=1 \quad \Rightarrow \quad q \prod_{b \neq a}\left(\sigma_{a}+\sigma_{b}\right)=\sigma_{a}^{2 n}
$$

- When $k=n$, we can show that these chiral ring relations do match the quantum cohomology ring relations.
[Buch, Kresch \& Tamvakis, arXiv:0809.4966[math-AG]]
- When $k<n$, we have checked in special cases that these chiral ring relations do reproduce the quantum cohomology ring relations.
- When k is odd, it can be argued that the number of Coulomb vacua matches the $\chi(S G(k, 2 n))=2^{k}\binom{n}{k}$.
- When k is even, several examples have been checked and results are consistent with Witten indices.

Calabi-Yau conditions

Known result in math:
The intersection of the Plücker embedding of $S G(k, 2 n)$ with a hypersurface of degree $2 n-k+1$ is a Calabi-Yau.

Calabi-Yau conditions

Known result in math:
The intersection of the Plücker embedding of $S G(k, 2 n)$ with a hypersurface of degree $2 n-k+1$ is a Calabi-Yau.

In GLSM, the Calabi-Yau conditions are that the sum of the charges under any $U(1)$ subgroup of the gauge group vanishes.

Calabi-Yau conditions

Known result in math:
The intersection of the Plücker embedding of $S G(k, 2 n)$ with a hypersurface of degree $2 n-k+1$ is a Calabi-Yau.

In GLSM, the Calabi-Yau conditions are that the sum of the charges under any $U(1)$ subgroup of the gauge group vanishes.

In the GLSM for $S G(k, 2 n)$, under an $U(1) \subset U(k)$,

- $2 n$ chirals in the $U(k)$ fundamental V contribute $2 n$,
- 1 chiral in $\wedge^{2} V^{*}$ contributes $-(k-1)$,
so the sum of $U(1)$ charges is $2 n-k+1$.
After the Plücker embedding of $S G(k, 2 n)$, the sum of the same $U(1)$ charges is still $2 n-k+1$.

Therefore, to build a Calabi-Yau, we need to intersect the image of $S G(k, 2 n)$ with a hypersurface of degree $2 n-k+1$.

Outline of the GLSM for Orthogonal Grassmannian

Definition

The orthogonal Grassmannian $O G(k, n)$ is the space parameterizing the k-dim'l subspaces in \mathbb{C}^{n} which are isotropic w.r.t. a given symmetric bilinear form g.

Outline of the GLSM for Orthogonal Grassmannian

Definition

The orthogonal Grassmannian $O G(k, n)$ is the space parameterizing the k-dim'I subspaces in \mathbb{C}^{n} which are isotropic w.r.t. a given symmetric bilinear form g.

The GLSM for $O G(k, n)$ is an $U(k)$ gauge theory having:

- n chiral multiplets Φ_{α}^{a} in the fundamental representation V
- 1 chiral multiplet $Q_{a b}$ in the symmetric tensor representation $\mathrm{Sym}^{2} V^{*}$
with superpotential

$$
W=\sum_{\alpha, \beta, a, b} Q_{a b} \Phi_{\alpha}^{a} \Phi_{\beta}^{b} g^{\alpha \beta}
$$

Additional results

- Equivariant quantum cohomology rings can also be duplicated from physics
- Orthogonal Grassmannians $O G(k, 2 n)$ and $O G(k, 2 n+1)$
- Mirrors of $S G$ and $O G$
- Quantum K-theory for symplectic Grassmannians
[Gu, Mihalcea, Sharpe, HZ, arXiv:2008.04909 [hep-th]]

Additional results

- Equivariant quantum cohomology rings can also be duplicated from physics
- Orthogonal Grassmannians $O G(k, 2 n)$ and $O G(k, 2 n+1)$
- Mirrors of $S G$ and $O G$
- Quantum K-theory for symplectic Grassmannians
[Gu, Mihalcea, Sharpe, HZ, arXiv:2008.04909 [hep-th]]

Future work

- Isotropic flag varieties, including G_{2} flags [In progress]

Thank you!

Quantum cohomology ring relations

Consider $S G(n, 2 n)$ with $n=2 k+1$ odd. We can rewrite the chiral ring relations as following:

$$
q \sigma_{a}^{2 k}+q e_{2}(\sigma) \sigma_{a}^{2 k-2}+\cdots+q e_{2 k-2}(\sigma) \sigma_{a}^{2}+q e_{2 k}(\sigma)=\sigma_{a}^{4 k+2}
$$

where $e_{i}(\sigma)$ is the i-th elementary symmetric polynomial.
Since the $e_{i}(\sigma)$ are Weyl invariant, the $e_{i}(\sigma)$ are constant on Weyl orbits. Rewrite the above equation as

$$
\begin{aligned}
P\left(\sigma_{a}^{2}\right) & \equiv\left(\sigma_{a}^{2}\right)^{2 k+1}-q\left(\sigma_{a}^{2}\right)^{k}-\cdots-q e_{2 k-2}(\sigma) \sigma_{a}^{2}-q e_{2 k}(\sigma) \\
& =0
\end{aligned}
$$

Then $\left\{\sigma_{a}^{2}\right\}$ should satisfy relations determined by the cofficients of $P\left(\sigma_{a}^{2}\right)$ according to Vieta's formula.

Quantum cohomology ring relations

Vieta's formula tell us that for the polynomial:

$$
\begin{aligned}
P(x) & =(x)^{2 k+1}-q(x)^{k}-\cdots-q e_{2 k-2}(\sigma) x^{2}-q e_{2 k}(\sigma), \\
& \equiv\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{2 k+1}\right)
\end{aligned}
$$

then its $(2 k+1)$ roots $\left\{x_{a}\right\}$ should satisfy following relations

$$
x_{a_{1}} \cdots x_{a_{\ell}}=(-)^{\ell-1} e_{2 \ell-n-1}(\sigma) q
$$

for $\ell \leq n=2 k+1$ and we've used $e_{i}=0$ for $i<0$ and $e_{0}=1$.

Quantum cohomology ring relations

Vieta's formula tell us that for the polynomial:

$$
\begin{aligned}
P(x) & =(x)^{2 k+1}-q(x)^{k}-\cdots-q e_{2 k-2}(\sigma) x^{2}-q e_{2 k}(\sigma) \\
& \equiv\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{2 k+1}\right)
\end{aligned}
$$

then its $(2 k+1)$ roots $\left\{x_{a}\right\}$ should satisfy following relations

$$
x_{a_{1}} \cdots x_{a_{\ell}}=(-)^{\ell-1} e_{2 \ell-n-1}(\sigma) q
$$

for $\ell \leq n=2 k+1$ and we've used $e_{i}=0$ for $i<0$ and $e_{0}=1$.

$$
x_{a} \rightarrow \sigma_{a}^{2} \quad \Rightarrow \quad \begin{aligned}
& \text { It recovers the quantum cohomology ring } \\
& \text { relations for } S G(n, 2 n) \text { when } k=2 k+1 .
\end{aligned}
$$

[Buch, Kresch \& Tamvakis, arXiv:0809.4966[math-AG]]
Similar analysis applies to $S G(n, 2 n)$ for n even cases.

Witten indices for $S G(k, 2 n)$ with k odd

For k odd, as discussed before, there are only the geometric phase and the pure Coulomb branch phase. Therefore, the number of Coulomb vacua should match the Euler characteristic of $S G(k, 2 n)$:

$$
2^{k}\binom{n}{k}
$$

The chiral ring relations,

$$
q \prod_{b \neq a}\left(\sigma_{a}+\sigma_{b}\right)=\sigma_{a}^{2 n}
$$

which can also be rewritten as

$$
\sigma_{a}^{2 n}-q\left[\sigma_{a}^{k-1}+e_{2}(\sigma) \sigma_{a}^{k-3}+\cdots+e_{k-1}(\sigma)\right]=0
$$

Witten indices for $S G(k, 2 n)$ with k odd

Since k is odd and we count solutions on the excluded locus

$$
\sigma_{a} \neq 0, \quad \sigma_{a} \neq \pm \sigma_{b} \text { for } a \neq b
$$

there is a \mathbb{Z}_{2}-symmetry among solutions:

$$
\begin{aligned}
& \text { If }\left\{\sigma_{1}, \ldots, \sigma_{k}\right\} \text { is one solution, then } \\
& \left\{-\sigma_{1}, \ldots,-\sigma_{k}\right\} \text { is another solution. }
\end{aligned}
$$

Further, all solutions satisfy the same equaitons due to the Weyl symmetry. So we can count the number of solutions as following:

$$
\frac{2 n(2 n-2) \cdots(2 n-2 k+2)}{k!}=2^{k}\binom{n}{k} .
$$

Witten indices for $S G(k, 2 n)$ with k even

For k even, the $r \ll 0$ phase is a mixed Higgs-Coulomb branch, so the total Witten index consist of contributions from both Higgs and Coulomb branches. This total number should match the Euler characteristic of $S G(k, 2 n)$.

Let us check in the $k=2$ case. On the Coulomb branch, when $k=2$, the chiral ring relations are

$$
q\left(\sigma_{1}+\sigma_{2}\right)=\sigma_{1}^{2 n}, \quad q\left(\sigma_{1}+\sigma_{2}\right)=\sigma_{2}^{2 n}
$$

which imply $\sigma_{1}^{2 n}=\sigma_{2}^{2 n}$. Exclude $\sigma_{1}= \pm \sigma_{2}$, there are $(2 n-2)$ relations between σ_{1} and σ_{2}. Then the chiral ring relation will reduce to an equation of degree $(2 n-1)$, which has $(2 n-1)$ solutions.

Witten indices for $S G(k, 2 n)$ with k even

Therefore, the number of Coulomb vacua is

$$
\frac{1}{2}(2 n-2)(2 n-1)=(2 n-1)(n-1)
$$

The Higgs branch in $r \ll 0$ is a $S U(2)$ gauge theory with $2 n$ fundamentals, which has Witten index $(n-1)$.

So the total number is

$$
(n-1)+(2 n-1)(n-1)=2^{2}\binom{n}{2}
$$

which matches the Euler characteristic of $S G(2,2 n)$.

