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5d Gauge Theories

1. d > 4: Gauge coupling in

1 2
L= T+

mass dimension [¢g?] =d —4 < 0

2. The interactions are irrelevant at long distances ('IR free’). Naive
expectation: these are boring theories.

3. No interacting CFTs?

Evidence to the contrary.



5d CFTs

. UVig — o0
. 5d gauge theories: effective theories on extended Coulomb branch

. Evidence:
Find description that extrapolates to strong coupling
= string /M-theory



5d N = 1 Gauge Theories and SCFTs

5d N =1 are IR descriptions of 5d N’ = 1 SCFTs in the UV:
*x Gauged: Ggauge
* Global: G x U(1)7 C GEY.
* Reps:
Vector multiplet in the adjoint of Ggauge: A = (A, 0, A)

Hyper-multiplet in (R, Rp) of Ggauge X G : h = (h@® h, 7).

*x Vacuum moduli spaces:
1. Coulomb branch (CB): vevs of ¢ and masses of mp of h.
2. Higgs branch (HB): vevs of the hyper-multiplets.



Example: Rank 1 Seiberg Theories

Goauge = SU(2) with N fundamental hyper-multiplets, Np =0, - --

GR = SO(2NF)
UV: enhanced ‘super-conformal flavor symmetry’

GR 5 U(1)p < G = By,

Np to Nr — 1 by giving mass mr for a matter multiplet and
decoupling (mr — 00).
= (¢, mp) parametrize the extended Coulomb branch



5d SCFTs and Canonical Singularities

A 5d superconformal field theory is defined as [Seiberg][Morrison, Seiberg]
7°9(X) = M-theory on X x R,
where X = canonical singularity (isolated or not).
Canonical singularity «+— SCFT

Kéahler cone <+— (Extended) Coulomb Branch

Complex deformations <— Higgs Branch



5d SCFTs and SQFTs

#5d QFT, geometry and webs:

[Seiberg][Morrison, Seiberg], [Intrilligator, Morrison, Seiberg][Klemm, Mayr,
Vata][Aharony, Hanany, Kol][Bergman, Rodriguez-Gomez]|[Bergman, Zafrir]

And recent works by [Kim, Lee, Hayashi, Zafrir, Bergman, Yagi, Hwang, Park,

Yonekura, Tachikawa, Rodriguez-Gomez, Hanany, Bourget, Cabrera, Yagi]...

# Recently, approach using 6d SCFT on S*:

[Xie, Yau][Del Zotto, Heckman, Morrison][Jefferson, Kim, Vafa, Zafrir][Jefferson, Katz, Kim,
Vafa][Bhardwaj, Jefferson][Apruzzi, Lin, Mayrhofer][Closset, Del Zotto, Saxena] [Apruzzi,
Lawrie, Lin, SSN, Wang|3[Apruzzi, SSN, Wang] [Bhardwaj][Eckhard, SSN, Wang]....



Coulomb Branch

X admits resolutions (crepant or with residual terminal singularities)
X — X
e Gauge Symmetry:
(compact) exceptional divisors

~

Sa s a=1,---,r =by(X) = rank of the SCFT

e Global (flavor) symmetry:
non-compact divisors D,, o« =1---, f = flavor rank,

~

bg (X) =1+ f .
e Free hypermultiplets: for P — S, =+ %, _,

b3(§v() — 229&7

contribute b3 /2 free hypers.



e Dynamics on the Coulomb Branch:

Pre-potential: ¢*,i =1,--- ,r CB vevs

k
6
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+12<Z G-l = Y |Ap- ¢+ mel > :
a roots AFERF

Cij = Teg 13Ty, diji = 5Tep((Ti(T Ty + T3 1)), T; = Cartans of Ggauge-
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The prepotential determines the effective Lagrangian
Cije
2472

where Gij — 6’2(9]]-" and CS-levels Cijo = (9@(9] (%.73

Relation to Geometry: [Intriligator, Morrison, Seiberg]

VNN O

Legg = Gij de® Nxdg? + Gij F* N+F7 +

@@é)g]: = Sz ‘X Sj ‘X Sk .



e Wrapped M2-branes on rational curves:
1. normal bundle degree (—2,0): W-bosons
2. normal bundle degree (—1,—1): matter hypermultiplets

o SCFT:

1
— ~ Volume(S,) — 0

g2

Many geometric tools: Toric CY, Elliptic fibrations, Characterize
collapsable complex surfaces, Isolated Hypersurface Singularities (IHS)

Things to get from the CB:

¢ IR gauge theory description (ruling of surfaces)

e UV dualities
e BPS states (GV invariants)

e Symmetries: 0-, 1-form symmetries



Symmetries from CB

O-form symmetries:

Gauge Theory has global symmetry (IR flavor symmetry) G'X and
topological U(1)r

1
j=—«TrtFAF

872
Examples:
SU(N.) + NpF has G'} = U(Np), Sp(N) + NrF has G'f = SO(2Ny).

UV fixed points:
G SO GR x U7

G%Y: Encoded in the Combined Fiber Diagram (CFD):

Graph made of rational curves C; = D; - (> Sa), where (—2,0) curves
are marked vertices, and intersections give rise to G, and (—1,—1)
curves are hypermultiplets.

[Series of papers with: Apruzzi, Lawrie, Lin, Yi-Nan Wang, Eckhard, SSN]



Higher-Form Symmetries

Gauge theories can have generalized global symmetries
[Gaiotto, Kapustin, Seiberg, Willett].

In d dimensions: 0-form symmetry (ordinary symmetry), charged
operator that is point-like with

.
gd—1

A g-form symmetry: charged operators are dimension ¢ and with
topological surface operators of co-dimension ¢ + 1.

Higher form symmetries for 5d SCFTs: [Morrison, SSN, Willett]
[Albertini, Garcia-Extebaria, Hosseini, Del Zotto] [Closset, SSN, Y-N Wang]



Higher Form Symmetries in Gauge Theories

5d Gauge Theories:

e Gauge theories (no matter) with simply-connected gauge group G
and center Z have an (electric) 1-form symmetry I' = Z.

Charged operators:
Wilson loops in rep R, transform under I' as R does under Z.

o If 7, (G) =T, # 1 then the theory as a 2-form (magnetic) symmetry.

Can pass from one to the other by gauging (sum over background values
of gauge field H*(Ms,T")).

Example:
SU(N)hasal'=Zy, SU(N)/Zy has 'y, = Zx 2-form symmetry.



g-Form Symmetry from Geometry

M-theory on X, boundary five-manifold 0X. 1-form symmetry:

# M2-branes on compact 2-cycles: Hz(X)
mass m < oo particles in 5d

# M2-brane on non-compact 2-cycle: Hy (X, 0X)
infinite mass particle, worldline defines line operator.
Some line operators could be screened by dynamical particles:

'Y = Hy(X,0X)/Ha(X)

For g-form symmetry: e = M2, m = M5-branes wrapped

Fgﬂ — h(k=3—q)
@ by = (Hp(X,0X)/H (X))
F771 h(k:6—q)



LY =)
L) =hs,)
I =h
Ffi) — lLJ(3)
Ffé) — [1(2)



'™ from intersection theory

I = Hy(X,0X)/Hz(X)

This can be computed on the Coulomb branch. Poincaré-Lefschetz
duality maps this to

F(l) — Zb4/M4ZbQ

where M, is the intersection matrix between compact curves C and
compact divisors S in X:

My=(S-C)rxtr+p)



Example: Toric CY3

Toric fan defined by external vertices v, a = 1,--- , f + 3 and internal
vertices v;,2 = 1,--- ,r. In this case I' is computed from the fan

( Vi \
viio )

I =7/73/ImA, A=

Compute Smith normal form of A to find

T'=Z¢, & Zeo, S L, .



Examples

o SU(2)o: A=((1,0,1),(—1,0,1),(0,1,1), (0, —1,1)).

A= "

_ O = O
_ o O O
o O O =
o O = O
O N O O

—1
= 1'= Z>.
o Likewise SU(N)y: I' = Zgcank) v




Global Symmetries beyond IR-description

Advantages of the geometric formulation:

1. I" although computed on the CB, can capture symmetries of the UV
= seems to be applicable to UV fixed point

2. Non-Lagrangian theories: Rank 1: P2-Seiberg theory.
Toric fan: A = ((—1,0,1),(0,—1,1),(1,1,1) results in

We will see examples of 3-form symmetries in 5d SCFTs on the Higgs
branch.



Coulomb branch

e Gauge theory descriptions:
Not necessarily unique, from rulings of compact divisors.

e SCFT flavor symmetry and decoupling

e Higher form symmetries:
Computable in terms of the OX or resolution.



Geometric Setup CB | HB | Symmetries Scope
Toric CY v |V v Limited Class of models
Elliptic CY v - v All known examples (from 6d)
Collapsable Surfaces || v/ - Some Bottom-up, not CY geometry
IHS v | v v Special class, new effects
Brane-Webs v | v v After Elliptic CY: largest class

Not always Geo.
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Higgs Branch

Higgs Branch (HB) of the SCFT 7°¢(X) is a hyper-Kéhler cone
HB[7T°4(X)].
Dimy = dy. Unlike the CB, metric on the HB receives quantum
corrections from M2-instantons.
Geometric characterization in terms of deformation of X
X

Geometric Framework:

e [solated toric CY3

e Isolated Hypersurface Singularities (IHS)

Complementary approach:

recent progress using branewebs, determining the magnetic quiver and
Hasse diagram for 5d SCFTs with gauge theory IR descriptions [Bourget,
Cabrera, Hanany, Grimminger, Yagi, Zhong... ]



Interlude: Webs, Tropical Geometry, and Polygons

X =(Generalized) toric.

dual graph
grap

X Wx = 5-brane web (tropical geometry)

Conjecture [Cabrera, Hanany, Yagi:
33d N = 4 quiver gauge theory MQ(®) associated Wy, determined by
irreducible subwebs, such that

CB [MQ@} — HB [T(E’d)(X)} .

Quantum corrections on LHS are understood [Cremonesi, Hanany, Zaffaroni],
and [Nakajima][ Braverman, Finkelberg, Nakajima][Bullimore, Dimofte, Gaiotto]
Natural question: what is the MQ®®) in terms of X?

e Strictly convex: deformations in terms of Minkowski sums [Altmann].

e Formulate the rules on Wy in terms of the generalized toric polygon
Px for X: algorithm to determine the MQ and Hasse diagram [van
Beest, Bourget, Eckhard, SSN].



Higgs Branch from Colored Polygons

An Example from [van Beest, Bourget, Eckhard, SSNI:
Isolated toric CY X, with strictly convex polygon Px

1. Determine all Minkowski sum decompositions of Px: Px = +; F,

2. Each summand is associated with a color ¢;, and each Minkowski
sum decomposition induces an edge coloring

Es-theory (i.e. SU(2) + 2F IR description):

T SNV

3. An edge coloring is consistent if it extends to a tasselation of P into

triangles of one color and bi-colored parallelograms:




1
4. Each color — @ in the MQ.

5. The number of edges k., ., between nodes associated to c¢; and ¢ are
determined by the mixed volume, i.e.

ke, c, = Area(G,, .,) = area of the ¢y, co bicolored paralellogram .

In the dual tropical geometry: stable intersection of tropical curves.

VAN U =

Higgs branch: a; @ a; (minimal nilpotent orbits).

[van Beest, Bourget, Eckhard, SSN]: algorithm for any (not necessarily strictly)
convex toric and generalized toric (‘dot diagram’) polygon.

Open question: derive these rules from the deformation theory of X.




Deformations of Isolated Hypersurface Singularities (IHS)

We propose [Closset, SSN, Y-N Wang] a geometric approach for IHS to
determine the MQ from X.

Let X be a canonical IHS. Classified by [Yau, Yu][Xie, Yau][Davenport, Melnikov]
X: {F(x1,29,23,24) = F(x) =0} < C*.
1. F'is quasi-homogeneous, i.e. z; = A% x; then
FAT2;) = AF(x), ¢ € Q0.
2. Singular at an isolated point.

3. Canonical = >, ¢; > 1 or
c= 2?21(1 — 2q;) < 2 [Shapere, Vafa]

19 different families of IHS, with many redundancies.



Deformation

Deformation X is characterized by the Milnor ring,
M(F) — C[xla L2,X3, £L‘4]/dF )

which is finitely generated for IHS of dimension x = [+, (¢; ! — 1), with
X:  F)+> tx™=0, x™eM(F).

Deformed space has additional three-cycles
Hj ()A(, 7) =17", 1 = Milnor number .

Define the spectral numbers ¢;:

4
b=Qi+) ¢—1, Q=) qgmy.
i i=1



Mixed Hodge structure from monodromy acting on H3s:
6 <1: dimH“?(X,Z)=7
6=1: dimH**(X,Z)=f
6>1: dimH*'(X,Z) =7.

Higgs branch is given by the number of dynamical hypermultiplets,
which arise from /; < 1 [Gukov, Vafa, Witten]

dimH(/\/lH) =dyg =71+ f.

f=flavor rank, as on the CB, via conifold transitions.



Higgs Branch from Duality

To determine the hyper-Kéhler structure: use dualities.

Proposal in [Closset, SSN, Y-N Wang]:
Consider Type IIB on X. This is a 4d N' = 2 SCFT .744(X).

Compactify both theories to 3d N = 4, the “electric quiver(ine)s’
e EQ®Y = T7°4(X) on T
e EQUd = 744(X) on 5!

These theories are related by T-duality, which realizes 3d mirror
symmetry [Hori, Ooguri, Vafa].

Let: MQ®Y = 3d mirror of EQ®Y MQ®d) = 3d mirror of EQ®“d).

Conjecture:

MQ®Y = EQ*V/u()!,  MQUY = EQEY/U(1),



M-theory on X: Type 1IB on X:

TXSd 7X4d
T2 l l gt
3d N=4 theory 3d N=4 theory
(5) (4)
EQ % EQ
@‘}qo
3d Mirror Symmetry ' \3\6 )3 ' 3d MS
3d N=4 theory 3d N=4 theory
MQ® MQ®

MQ® = EQW/U(1)




M-theory on X: Type IIB on X:

TXSd j‘X4d
dim(CB, HB) T l l S'
(1, dyy= /1}+f) 3d N=4 theory 3d N=4 theory (/ﬁ r+f)
EQ(4)
' 3d MS
3d N=4 theory 3d N=4 theor A
(dy= R+, 1) MQ™ Mo D
H— /

MQ® = EQW/U(1)




Magnetic Quiver(ine)s and 5d Higgs Branch

From this conjecture we identify the MQ= as the magnetic quiver(ine) of
the 5d SCFT 7°¢, which whenever MQ®Y is a Lagrangian quiver should
agree with [Bourget, Cabrera, Hanany, Grimminger, Yagi, Zhong...]

We derive this from a geometric point of view:

HB [TSd(X)} — CB [MQ@@} — CB [EQVM) U],

Bonus 4d result: HB(.7%4) = CB(MQUd).

The M2-instantons, which quantum correct the metric on the classical
Higgs branch are encoded in the monopole operators studied in
[Cremonesi, Hanany, Zaffaroni] in3d N = 4.



5d Higgs branch from EQ for 4d SCFT

The strategy to compute the Higgs branch of 7°¢(X):
e Consider 4d SCFT % =1IB on X.

e Compute EQUd).
4d SCFT Lagrangian SCFT, then EQ simply dimensional reduction.
Using geometric engineering in 4d: [Shapere, Vafa][Shapere, Tachikawa]

1. CB of Z%d: Deformations X

2. CB spectrum of operators from spectrum of the singularity

Qi
A
D1 — 1

e Gauge U(1)/ to obtain MQ®®), whose CB is the HB of 7°¢

A =



Example 1: E-strings

Rank N FEg Seiberg theories:

3, .3, .3, 3N

2, .4 .4 AN
XEg, : xi+xy+x5+a, =0

2, .3, .6 6N
Xg, - xit+axy+xs+ax; =0

IR-description: Sp(N) + (n — 1)F + AS.
Resolution by N exceptional divisors.

f T dy T dy
Fg || 6 N 12N -1 | 12N—-7| N+6
B |l 7 N ISN -1 | I8N -8 | N+47
Eg || 8 N 30N —1 | 30ON—-9| N+8




Example: Rank N Eg-theory

The 4d SCFT on X, was shown in [Katz, Mayr, Vafa] to have a gauge theory
description

G =]][SU(dN).

dp
The spectrum e.g. for N = 2:
®N
Al6|5]4]|3]2
#1144 7 ® 2N
SU (L) contributes: ° ° ® ° °
Az{L,L—l,---,Q}. N 2N 3N 2N N

This quiver with SU(d; V) gauge nodes is the electric quiver EQ¥). The
same quiver with U(d;N) nodes is the magnetic quiver MQ®®).



Example 2: Rank 2 with G = Ej

O] =

Y

DO | =

1 3
F($):Qf%+$g—|—$éo+$3$i:0, (Q17QQ7Q37Q4):( 7E71_O)

=84, r=2, f=8, dy=46, 7=38.

Computing the scaling dimensions of .74:

Alll |2 (3[4 ]|5 |6 |7 [8]9]10
#1188 | 7T | 7T |5 4|32 |11

consistent with a 4d Lagrangian SCFT with
G = SU(10) x SU(8) x SU(7) x SU(6) x SU(5) x SU(4)* x SU(2).
4d Quiver, which is the same as EQ“Y in 3d, with SU (L) nodes:

5

....I..D
2 4 6 8 10 7 4 1



MQ®) given by gauging U(1)3, i.e. the quiver with U(L) nodes:

QOQOIQOQ
2 4 6 8 74 1

The Higgs branch of 7% has a Hasse diagram — the partially ordered set
of symplectic leaves of the HB — following from this

®
¢7

o
68‘
o

Implies Gr = Exs.



Coulomb branch and IR-description

By resolving the singularity
(ng) ; xél) ; mi(sl) ; xfll) ;01)
(5653),:6512),27;1),5?); 52) )

We find that the geometry is P? U Blg[F5, with a ruling yieling a 5d IR
description

SU((2)g — SU(2) — |5]
# Gr = Eg agrees with [Apruzzi, Lawrie, Lin, SSN, Wang].

# Using 5-brane webs we can confirm the MQ
[van Beest, Bourget, Eckhard, SSN].

# Note this is a descendant of the rank N = 2 Ey-theory, which also has a
description as [1] — SU(2) — SU(2) — [5].



Example 3:

Applications to theories that so far have no MQ using brane-webs:

1 1 11
Fa) =22+ a3+ 20 +25 =0, (a1, ds, s qa) = (— 11 —) .

Crepant resolution yields that the IR description is one of the three ‘dual’
gauge theories:

SU(3)s +5F, Sp(2)+3F+2AS,  Gy+5F.

Using the same logic as above we find the MQ(®) to be

Spin(1)
®

Sp(2)
[
Sp(3) Sp(4) Sp(3) Sp(2) Sp(1)
o—0—90 000 00000
Spin(5) Spin(1l) Spin(9)  Spin(7)  Spin(5)  Spin(3)




Curiosities: Rank O theories

Many IHS have remanent terminal singularities:

# IHS with no crepant blowups are rank 0 theories.
# For higher rank there can be remnant terminal singularities — coupling
of rank 0 to higher rank.

Example: Close cousin to the Eg rank 1 theory:
F(z)=a+25+a5+15=0.

One blowup
(xlaana L3, L4, 51) .

The resolved singularity has a terminal singularity at

(51:.731:332:333:02
i+ x5 +as+01=0.

This is in fact in IIB the theory of type Argyres-Douglas (AD) [Az, Dy4].



This theory has

r=1, f=0, dy = 16, ' =7,
Interpretation in IIB is simply that the AD theory [D4, Es] has along a
sublocus on the HB a residual SCFT of type AD [As, Dy].

In 5d further analysis of this model needs to determine, whether this is a
new rank 1 5d SCFT. Possibly this is a discrete Zs-gauging of a Seiberg
theory.

This effect is rather prominent even within the IHS class of canonical
singularities.



Summary and Outlook

5d SCFTs provide a perfect setup, where geometric methods inform our
understanding of QFTs.

To fully explore their moduli spaces, and properties, we need a variety of
geometric and string theoretic tools: resolution and deformation of
singularities, brane-webs/dualities.

Key open questions:

e Role of the rank 0 theories: e.g. as discrete gauging, and relation to
3-form symmetries.

e Mirrors of IHS?
e Mixed Coulomb/Higgs branches

e Generalization of deformations beyond IHS, e.g. to generalized toric
models, and identify the associated geometry.



