Recent Progress in 5d SCFTs: Symmetries and Moduli Spaces

Sakura Schäfer-Nameki

GLSM-2020 Conference, August 18, 2020

Based on Papers BC (Before Corona)

1906.11820, 1907.05404,1909.09128 withFabio Apruzzi, Craig Lawrie, Ling Lin, Yi-Nan Wang# 1912.04264 with Fabio Apruzzi, Yi-Nan Wang

...and DC (During Corona)

2004.15007 with Julius Eckhard, Yi-Nan Wang

2005.12296 with Dave Morrison, Brian Willett

2007.15600 with Cyril Closset, Yi-Nan Wang

2008.05577 with Marieke van Beest, Antoine Bourget, Julius Eckhard

5d Gauge Theories

1. d > 4: Gauge coupling in

$$\mathcal{L} = -\frac{1}{4g^2} \mathrm{Tr} F^2 + \cdots$$

mass dimension $[g^2] = d - 4 < 0$

- 2. The interactions are irrelevant at long distances ('IR free'). Naive expectation: these are boring theories.
- 3. No interacting CFTs?

Evidence to the contrary.

5d CFTs

- 1. UV: $g \rightarrow \infty$
- 2. 5d gauge theories: effective theories on extended Coulomb branch
- 3. Evidence:

Find description that extrapolates to strong coupling \Rightarrow string/M-theory

5d $\mathcal{N} = 1$ Gauge Theories and SCFTs

5d $\mathcal{N} = 1$ are IR descriptions of 5d $\mathcal{N} = 1$ SCFTs in the UV:

- * Gauged: G_{gauge}
- * Global: $G_{\rm F}^{\rm IR} \times U(1)_T \subset G_{\rm F}^{\rm UV}$.
- * Reps:

Vector multiplet in the adjoint of G_{gauge} : $\mathcal{A} = (A_{\mu}, \phi, \lambda)$ Hyper-multiplet in $(\mathbf{R}, \mathbf{R}_{\text{F}})$ of $G_{\text{gauge}} \times G_{\text{F}}^{\text{IR}}$: $\mathbf{h} = (h \oplus h^c, \psi)$.

- * Vacuum moduli spaces:
 - 1. Coulomb branch (CB): vevs of ϕ and masses of m_F of **h**.
 - 2. Higgs branch (HB): vevs of the hyper-multiplets.

Example: Rank 1 Seiberg Theories

- $G_{\text{gauge}} = SU(2)$ with N_F fundamental hyper-multiplets, $N_F = 0, \cdots, 7$
- $G_{\rm F}^{\rm IR} = SO(2N_F)$
- UV: enhanced 'super-conformal flavor symmetry'

 $G_{\rm F}^{\rm IR} \times U(1)_T \hookrightarrow G_{\rm F}^{\rm UV} = E_{N_F+1}$

N_F to N_F − 1 by giving mass m_F for a matter multiplet and decoupling (m_F → ∞).
 ⇒ (φ, m_F) parametrize the extended Coulomb branch

5d SCFTs and Canonical Singularities

A 5d superconformal field theory is defined as [Seiberg][Morrison, Seiberg] $\mathcal{T}^{\text{5d}}(\mathbf{X}) = \text{M-theory on } \mathbf{X} \times \mathbb{R}^{1,4} \,,$

where **X** = canonical singularity (isolated or not).

Canonical singularity \longleftrightarrow SCFT Kähler cone \longleftrightarrow (Extended) Coulomb Branch Complex deformations \longleftrightarrow Higgs Branch

5d SCFTs and SQFTs

5d QFT, geometry and webs:

[Seiberg][Morrison, Seiberg], [Intrilligator, Morrison, Seiberg][Klemm, Mayr, Vafa][Aharony, Hanany, Kol][Bergman, Rodriguez-Gomez][Bergman, Zafrir] And recent works by [Kim, Lee, Hayashi, Zafrir, Bergman, Yagi, Hwang, Park, Yonekura, Tachikawa, Rodriguez-Gomez, Hanany, Bourget, Cabrera, Yagi]...

Recently, approach using 6d SCFT on S^1 :

[Xie, Yau][Del Zotto, Heckman, Morrison][Jefferson, Kim, Vafa, Zafrir][Jefferson, Katz, Kim, Vafa][Bhardwaj, Jefferson][Apruzzi, Lin, Mayrhofer][Closset, Del Zotto, Saxena] [Apruzzi, Lawrie, Lin, SSN, Wang]³[Apruzzi, SSN, Wang] [Bhardwaj][Eckhard, SSN, Wang]....

Coulomb Branch

X admits resolutions (crepant or with residual terminal singularities)

$$\widetilde{\mathbf{X}} \longrightarrow \mathbf{X}$$

 Gauge Symmetry: (compact) exceptional divisors

$$\mathcal{S}_a$$
, $a = 1, \cdots, r = b_4(\widetilde{\mathbf{X}}) = \text{rank of the SCFT}$

• Global (flavor) symmetry: non-compact divisors D_{α} , $\alpha = 1 \cdots$, f = flavor rank,

$$b_2(\widetilde{\mathbf{X}}) = r + f$$
.

• Free hypermultiplets: for $\mathbb{P}^1 \hookrightarrow \mathcal{S}_a \to \Sigma_{g_a}$,

$$b_3(\widetilde{\mathbf{X}}) = 2\sum_a g_a \,,$$

contribute $b_3/2$ free hypers.

• Dynamics on the Coulomb Branch:

Pre-potential: ϕ^i , $i = 1, \cdots, r$ CB vevs

$$\begin{split} \mathcal{F} &= \left(\frac{1}{2g^2} \, C_{ij} \phi^i \phi^j + \frac{k}{6} \, d_{ij\ell} \phi^i \phi^j \phi^\ell \right) \\ &+ \frac{1}{12} \left(\sum_{\alpha \text{ roots}} |\phi \cdot \alpha|^3 - \sum_{\lambda_{\rm F} \in \mathbf{R}_{\rm F}} |\lambda_{\rm F} \cdot \phi + m_{\rm F}|^3 \right) \,, \end{split}$$

 $C_{ij} = \operatorname{Tr}_{\mathrm{F}} T_i T_j, d_{ijk} = \frac{1}{2} \operatorname{Tr}_{\mathrm{F}} ((T_i (T_j T_k + T_k T_j)), T_i = \operatorname{Cartans} \text{ of } G_{\mathrm{gauge}}.$

The prepotential determines the effective Lagrangian

$$\mathcal{L}_{\text{eff}} = G_{ij} \, d\phi^i \wedge \star d\phi^j + G_{ij} \, F^i \wedge \star F^j + \frac{c_{ij\ell}}{24\pi^2} \, A^i \wedge F^j \wedge F^\ell$$

where $G_{ij} = \partial_i \partial_j \mathcal{F}$ and CS-levels $c_{ij\ell} = \partial_i \partial_j \partial_\ell \mathcal{F}$.

Relation to Geometry: [Intriligator, Morrison, Seiberg]

$$\partial_i \partial_j \partial_\ell \mathcal{F} = \mathcal{S}_i \cdot_{\widetilde{\mathbf{X}}} \mathcal{S}_j \cdot_{\widetilde{\mathbf{X}}} \mathcal{S}_k.$$

- Wrapped M2-branes on rational curves:
 - 1. normal bundle degree (-2, 0): W-bosons
 - 2. normal bundle degree (-1, -1): matter hypermultiplets
- SCFT:

$$\frac{1}{g_a^2} \sim \text{Volume}(\mathcal{S}_a) \to 0$$

Many geometric tools: Toric CY, Elliptic fibrations, Characterize collapsable complex surfaces, Isolated Hypersurface Singularities (IHS) Things to get from the CB:

- IR gauge theory description (ruling of surfaces)
- UV dualities
- BPS states (GV invariants)
- Symmetries: 0-, 1-form symmetries

Symmetries from CB

0-form symmetries:

Gauge Theory has global symmetry (IR flavor symmetry) G_F^{IR} and topological $U(1)_T$

$$j = \frac{1}{8\pi^2} \star \mathrm{Tr} F \wedge F$$

Examples:

 $SU(N_c) + N_F \mathbf{F}$ has $G_F^{IR} = U(N_F)$, $Sp(N) + N_F \mathbf{F}$ has $G_F^{IR} = SO(2N_F)$.

UV fixed points:

$$G_F^{\mathrm{UV}} \supset G_F^{\mathrm{IR}} \times U(1)_T$$

 G_F^{UV} : Encoded in the Combined Fiber Diagram (CFD):

Graph made of rational curves $C_i = D_i \cdot (\sum_{\alpha} S_{\alpha})$, where (-2, 0) curves are marked vertices, and intersections give rise to G_F , and (-1, -1) curves are hypermultiplets.

[Series of papers with: Apruzzi, Lawrie, Lin, Yi-Nan Wang, Eckhard, SSN]

Higher-Form Symmetries

Gauge theories can have generalized global symmetries [Gaiotto, Kapustin, Seiberg, Willett].

In *d* dimensions: 0-form symmetry (ordinary symmetry), charged operator that is point-like with

$$q = \int_{S^{d-1}} \rho$$

A *q*-form symmetry: charged operators are dimension q and with topological surface operators of co-dimension q + 1.

Higher form symmetries for 5d SCFTs: [Morrison, SSN, Willett] [Albertini, Garcia-Extebaria, Hosseini, Del Zotto] [Closset, SSN, Y-N Wang]

Higher Form Symmetries in Gauge Theories

5d Gauge Theories:

- Gauge theories (no matter) with simply-connected gauge group *G* and center *Z* have an (electric) 1-form symmetry Γ = *Z*.
 Charged operators:
 Wilson loops in rep **R**, transform under Γ as **R** does under *Z*.
- If $\pi_1(G) = \Gamma_m \neq 1$ then the theory as a 2-form (magnetic) symmetry.

Can pass from one to the other by gauging (sum over background values of gauge field $H^2(M_5, \Gamma)$).

Example:

SU(N) has a $\Gamma = \mathbb{Z}_N$, $SU(N)/\mathbb{Z}_N$ has $\Gamma_m = \mathbb{Z}_N$ 2-form symmetry.

q-Form Symmetry from Geometry

M-theory on **X**, boundary five-manifold ∂ **X**. 1-form symmetry:

- # M2-branes on compact 2-cycles: $H_2(\mathbf{X})$ mass $m < \infty$ particles in 5d
- # M2-brane on non-compact 2-cycle: *H*₂(X, ∂X)
 infinite mass particle, worldline defines line operator.
 Some line operators could be screened by dynamical particles:

 $\Gamma^{(1)} = H_2(\mathbf{X}, \partial \mathbf{X}) / H_2(\mathbf{X})$

For *q*-form symmetry: e = M2, m = M5-branes wrapped

$$\Gamma_{e}^{(q)} = \mathfrak{h}_{(k=3-q)}$$

$$\Gamma_{m}^{(q)} = \mathfrak{h}_{(k=6-q)}$$

$$\mathfrak{h}_{(k)} = (H_{k}(\mathbf{X}, \partial \mathbf{X})/H_{k}(\mathbf{X}))$$

$$\begin{split} q &= -1: \qquad \Gamma_{e}^{(-1)} = \mathfrak{h}_{(4)} \\ q &= 0: \qquad \Gamma_{e}^{(0)} = \mathfrak{h}_{(3)}, \qquad \Gamma_{m}^{(0)} = \mathfrak{h}_{(6)} \\ q &= 1: \qquad \Gamma_{e}^{(1)} = \mathfrak{h}_{(2)}, \qquad \Gamma_{m}^{(1)} = \mathfrak{h}_{(5)} \\ q &= 2: \qquad \Gamma_{e}^{(2)} = \mathfrak{h}_{(1)}, \qquad \Gamma_{m}^{(2)} = \mathfrak{h}_{(4)} \\ q &= 3: \qquad \Gamma_{e}^{(3)} = \mathfrak{h}_{(0)}, \qquad \Gamma_{m}^{(3)} = \mathfrak{h}_{(3)} \\ q &= 4: \qquad \Gamma_{m}^{(4)} = \mathfrak{h}_{(2)}. \end{split}$$

 $\Gamma^{(1)}$ from intersection theory

 $\Gamma^{(1)} = H_2(\mathbf{X}, \partial \mathbf{X}) / H_2(\mathbf{X})$

This can be computed on the Coulomb branch. Poincaré-Lefschetz duality maps this to

$$\Gamma^{(1)} = \mathbb{Z}^{b_4} / \mathcal{M}_4 \mathbb{Z}^{b_2}$$

where \mathcal{M}_4 is the intersection matrix between compact curves *C* and compact divisors \mathcal{S} in **X**:

$$\mathcal{M}_4 = (\mathcal{S} \cdot C)_{r \times (r+f)}$$

Example: Toric CY3

Toric fan defined by external vertices \mathbf{v}_{α} , $\alpha = 1, \dots, f + 3$ and internal vertices $\hat{\mathbf{v}}_i, i = 1, \dots, r$. In this case Γ is computed from the fan

$$\Gamma = \mathbb{Z}^{f+3} / \mathrm{Im}A, \qquad A = \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_{f+3} \end{pmatrix}$$

Compute Smith normal form of *A* to find

$$\Gamma = \mathbb{Z}_{\alpha_1} \oplus \mathbb{Z}_{\alpha_2} \oplus \mathbb{Z}_{\alpha_3} \,.$$

Examples

•
$$SU(2)_0$$
: $A = ((1,0,1), (-1,0,1), (0,1,1), (0,-1,1)).$
 $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ -1 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$

 $\Rightarrow \Gamma = \mathbb{Z}_2.$

• Likewise $SU(N)_k$: $\Gamma = \mathbb{Z}_{gcd(N,k)} \checkmark$

Global Symmetries beyond IR-description

Advantages of the geometric formulation:

- 1. Γ although computed on the CB, can capture symmetries of the UV \Rightarrow seems to be applicable to UV fixed point
- 2. Non-Lagrangian theories: Rank 1: \mathbb{P}^2 -Seiberg theory. Toric fan: A = ((-1, 0, 1), (0, -1, 1), (1, 1, 1) results in

$$\mathbb{P}^2$$
: $\Gamma = \mathbb{Z}_3$ $(G_F = 1).$

We will see examples of 3-form symmetries in 5d SCFTs on the Higgs branch.

Coulomb branch

- Gauge theory descriptions: Not necessarily unique, from rulings of compact divisors.
- SCFT flavor symmetry and decoupling
- Higher form symmetries:
 Computable in terms of the ∂X or resolution.

Geometric Setup	CB	HB	Symmetries	Scope
Toric CY	\checkmark	\checkmark	\checkmark	Limited Class of models
Elliptic CY	\checkmark	-	\checkmark	All known examples (from 6d)
Collapsable Surfaces	\checkmark	-	Some	Bottom-up, not CY geometry
IHS	\checkmark	\checkmark	· ✓ ·	Special class, new effects
Brane-Webs	\checkmark	\checkmark	\checkmark	After Elliptic CY: largest class
Not always Geo.				

Geometric Setup	CB	HB	Symmetries	Scope
Toric CY	\checkmark	\checkmark	\checkmark	Limited Class of models
Elliptic CY	\checkmark	-	\checkmark	All known examples (from 6d)
Collapsable Surfaces	\checkmark	-	Some	Bottom-up, not CY geometry
IHS	\checkmark	\checkmark	· ✓ ·	Special class, new effects
Brane-Webs	\checkmark	\checkmark	\checkmark	After Elliptic CY: largest class
Not always Geo.				

Higgs Branch

Higgs Branch (HB) of the SCFT $\mathcal{T}^{5d}(X)$ is a hyper-Kähler cone

 $HB[\mathcal{T}^{5d}(\boldsymbol{X})]\,.$

 $Dim_{\mathbb{H}} = d_{H}$. Unlike the CB, metric on the HB receives quantum corrections from M2-instantons.

Geometric characterization in terms of deformation of X

$\widehat{\mathbf{X}}$

Geometric Framework:

- Isolated toric CY3
- Isolated Hypersurface Singularities (IHS)

Complementary approach:

recent progress using branewebs, determining the *magnetic quiver* and Hasse diagram for 5d SCFTs with gauge theory IR descriptions [Bourget, Cabrera, Hanany, Grimminger, Yagi, Zhong...]

Interlude: Webs, Tropical Geometry, and Polygons

X =(Generalized) toric.

 $X \qquad \stackrel{\text{dual graph}}{\longrightarrow} \qquad \mathcal{W}_X = \text{5-brane web (tropical geometry)}$

Conjecture [Cabrera, Hanany, Yagi]:

 \exists 3d $\mathcal{N} = 4$ quiver gauge theory MQ⁽⁵⁾ associated \mathcal{W}_X , determined by irreducible subwebs, such that

$$\operatorname{CB}\left[\operatorname{MQ}^{(5)}\right] = \operatorname{HB}\left[\mathcal{T}^{(5d)}(\mathbf{X})\right]$$
.

Quantum corrections on LHS are understood [Cremonesi, Hanany, Zaffaroni], and [Nakajima][Braverman, Finkelberg, Nakajima][Bullimore, Dimofte, Gaiotto] Natural question: what is the MQ⁽⁵⁾ in terms of **X**?

- Strictly convex: deformations in terms of Minkowski sums [Altmann].
- Formulate the rules on W_X in terms of the generalized toric polygon
 P_X for X: algorithm to determine the MQ and Hasse diagram [van
 Beest, Bourget, Eckhard, SSN].

Higgs Branch from Colored Polygons

An Example from [van Beest, Bourget, Eckhard, SSN]: Isolated toric CY **X**, with strictly convex polygon *P*_{**X**}

- 1. Determine all Minkowski sum decompositions of P_X : $P_X = +_i P_{c_i}$
- 2. Each summand is associated with a color c_i , and each Minkowski sum decomposition induces an edge coloring E_3 -theory (i.e. $SU(2) + 2\mathbf{F}$ IR description):

$$E_3: \qquad \blacksquare = - + | + \swarrow = + \bigtriangleup$$

3. An edge coloring is consistent if it extends to a tasselation of *P* into triangles of one color and bi-colored parallelograms:

- 4. Each color $\rightarrow \bullet$ in the MQ.
- 5. The number of edges k_{c_1,c_2} between nodes associated to c_1 and c_2 are determined by the mixed volume, i.e.

 $k_{c_1,c_2} = \operatorname{Area}(G_{c_1,c_2}) = \text{area of the } c_1, c_2 \text{ bicolored paralellogram}.$

In the dual tropical geometry: stable intersection of tropical curves.

$$\mathrm{MQ}(E_3) = \underbrace{\begin{array}{c}1\\1\\1\\1\end{array}}^1 \underbrace{\begin{array}{c}1\\1\\1\end{array}}^1 \underbrace{\begin{array}{c}1\\1\\1\end{array}}^1$$

Higgs branch: $a_2 \oplus a_1$ (minimal nilpotent orbits).

[van Beest, Bourget, Eckhard, SSN]: algorithm for any (not necessarily strictly) convex toric and generalized toric ('dot diagram') polygon.

Open question: derive these rules from the deformation theory of **X**.

Deformations of Isolated Hypersurface Singularities (IHS)

We propose [Closset, SSN, Y-N Wang] a geometric approach for IHS to determine the MQ from $\widehat{X}.$

Let X be a canonical IHS. Classified by [Yau, Yu][Xie, Yau][Davenport, Melnikov]

$$\mathbf{X}: \qquad \{F(x_1, x_2, x_3, x_4) \equiv F(\mathbf{x}) = 0\} \quad \subset \quad \mathbb{C}^4$$

1. *F* is quasi-homogeneous, i.e. $x_i \rightarrow \lambda^{q_i} x_i$ then

$$F(\lambda^{q_i} x_i) = \lambda F(\mathbf{x}), \qquad q_i \in \mathbb{Q}_> 0.$$

- 2. Singular at an isolated point.
- 3. Canonical $\Rightarrow \sum_{i=1}^{4} q_i > 1$ or $\widehat{c} = \sum_{i=1}^{4} (1 - 2q_i) < 2$ [Shapere, Vafa]
- 19 different families of IHS, with many redundancies.

Deformation

Deformation $\widehat{\mathbf{X}}$ is characterized by the Milnor ring,

$$\mathcal{M}(F) = \mathbb{C}[x_1, x_2, x_3, x_4]/dF,$$

which is finitely generated for IHS of dimension $\mu = \prod_{i=1}^{4} (q_i^{-1} - 1)$, with

$$\widehat{\mathbf{X}}$$
: $F(\mathbf{x}) + \sum_{l=1}^{\mu} t_l \mathbf{x}^{\mathbf{m}_l} = 0, \quad \mathbf{x}^{\mathbf{m}_l} \in \mathcal{M}(F).$

Deformed space has additional three-cycles

$$H_3(\widehat{\mathbf{X}},\mathbb{Z}) = \mathbb{Z}^{\mu}, \qquad \mu = \text{Milnor number}.$$

Define the spectral numbers ℓ_l :

$$\ell_l = Q_l + \sum_i q_i - 1, \qquad Q_l = \sum_{i=1}^4 q_i \mathbf{m}_{l,i}.$$

Mixed Hodge structure from monodromy acting on H_3 :

$$\ell_l < 1: \quad \dim H^{1,2}(\mathbf{X}, \mathbb{Z}) = \hat{r}$$

$$\ell_l = 1: \quad \dim H^{2,2}(\mathbf{X}, \mathbb{Z}) = f$$

$$\ell_l > 1: \quad \dim H^{2,1}(\mathbf{X}, \mathbb{Z}) = \hat{r}.$$

Higgs branch is given by the number of dynamical hypermultiplets, which arise from $\ell_l \leq 1$ [Gukov, Vafa, Witten]

$$\dim_{\mathbb{H}}(\mathcal{M}_H) = d_H = \widehat{r} + f.$$

f = flavor rank, as on the CB, via conifold transitions.

Higgs Branch from Duality

To determine the hyper-Kähler structure: use dualities.

Proposal in [Closset, SSN, Y-N Wang]:

Consider Type IIB on **X**. This is a 4d $\mathcal{N} = 2$ SCFT $\mathscr{T}^{4d}(\mathbf{X})$.

Compactify both theories to 3d $\mathcal{N} = 4$, the 'electric quiver(ine)s'

•
$$\mathrm{EQ}^{(\mathrm{5d})} \equiv \mathcal{T}^{\mathrm{5d}}(\mathbf{X})$$
 on T^2

•
$$\mathrm{EQ}^{(4d)} \equiv \mathscr{T}^{4d}(\mathbf{X})$$
 on S^1

These theories are related by T-duality, which realizes 3d mirror symmetry [Hori, Ooguri, Vafa].

Let: $MQ^{(5d)} \equiv 3d$ mirror of $EQ^{(5d)}$, $MQ^{(4d)} \equiv 3d$ mirror of $EQ^{(4d)}$. Conjecture:

$$MQ^{(5d)} = EQ^{(4d)}/U(1)^f$$
, $MQ^{(4d)} = EQ^{(5d)}/U(1)^f$,

Magnetic Quiver(ine)s and 5d Higgs Branch

From this conjecture we identify the MQ= as the magnetic quiver(ine) of the 5d SCFT \mathcal{T}^{5d} , which whenever MQ^(5d) is a Lagrangian quiver should agree with [Bourget, Cabrera, Hanany, Grimminger, Yagi, Zhong...]

We derive this from a geometric point of view:

$$\mathrm{HB}\left[\mathcal{T}^{\mathrm{5d}}(\mathbf{X})\right] = \mathrm{CB}\left[\mathrm{MQ}^{(\mathrm{5d})}\right] = \mathrm{CB}\left[\mathrm{EQ}^{(\mathrm{4d})}/U(1)^{f}\right]$$

Bonus 4d result: $HB(\mathscr{T}^{4d}) = CB(MQ^{(4d)}).$

The M2-instantons, which quantum correct the metric on the classical Higgs branch are encoded in the monopole operators studied in [Cremonesi, Hanany, Zaffaroni] in 3d $\mathcal{N} = 4$.

5d Higgs branch from EQ for 4d SCFT

The strategy to compute the Higgs branch of $\mathcal{T}^{5d}(\mathbf{X})$:

- Consider 4d SCFT \mathscr{T}^{4d} = IIB on **X**.
- Compute EQ^(4d): 4d SCFT Lagrangian SCFT, then EQ simply dimensional reduction. Using geometric engineering in 4d: [Shapere, Vafa][Shapere, Tachikawa]
 1. CB of *I*^{4d}: Deformations X
 - 2. CB spectrum of operators from spectrum of the singularity

$$\Delta_l = \frac{Q_l}{\sum_{i=1}^4 q_i - 1}$$

• Gauge $U(1)^f$ to obtain MQ⁽⁵⁾, whose CB is the HB of \mathcal{T}^{5d}

Example 1: E-strings

Rank $N E_8$ Seiberg theories:

$$\begin{aligned} \mathbf{X}_{E_6} : & x_1^3 + x_2^3 + x_3^3 + x_4^{3N} = 0 \\ \mathbf{X}_{E_7} : & x_1^2 + x_2^4 + x_3^4 + x_4^{4N} = 0 \\ \mathbf{X}_{E_8} : & x_1^2 + x_2^3 + x_3^6 + x_4^{6N} = 0 \end{aligned}$$

IR-description: $Sp(N) + (n-1)\mathbf{F} + \mathbf{AS}$. Resolution by *N* exceptional divisors.

	$\int f$	r	d_H	\widehat{r}	\widehat{d}_{H}	
E_6	6	N	12N - 1	12N - 7	N+6	
E_7	7	N	18N - 1	18N - 8	N+7	
E_8	8	N	30N - 1	30N - 9	N+8	

Example: Rank $N E_6$ -theory

The 4d SCFT on X_{E_6} was shown in [Katz, Mayr, Vafa] to have a gauge theory description

$$G = \prod_{d_k} SU(d_k N)$$

The spectrum e.g. for N = 2:

This quiver with $SU(d_k N)$ gauge nodes is the electric quiver EQ⁽⁴⁾. The same quiver with $U(d_k N)$ nodes is the magnetic quiver MQ⁽⁵⁾.

Example 2: Rank 2 with $G_F = E_8$

$$F(x) = x_1^2 + x_2^5 + x_3^{10} + x_3 x_4^3 = 0, \qquad (q_1, q_2, q_3, q_4) = \left(\frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \frac{3}{10}\right)$$
$$\mu = 84, \quad r = 2, \quad f = 8, \quad d_H = 46, \quad \hat{r} = 38.$$

Computing the scaling dimensions of \mathscr{T}^{4d} :

Δ	1	2	3	4	5	6	7	8	9	10
#	8	8	7	7	5	4	3	2	1	1

consistent with a 4d Lagrangian SCFT with

 $G = SU(10) \times SU(8) \times SU(7) \times SU(6) \times SU(5) \times SU(4)^2 \times SU(2).$

4d Quiver, which is the same as $EQ^{(4d)}$ in 3d, with SU(L) nodes:

 $MQ^{(5)}$ given by gauging $U(1)^8$, i.e. the quiver with U(L) nodes:

The Higgs branch of $\mathcal{T}^{(5d)}$ has a Hasse diagram – the partially ordered set of symplectic leaves of the HB – following from this

Implies $G_F = E_8$.

Coulomb branch and IR-description

By resolving the singularity

$$(x_1^{(2)}, x_2^{(1)}, x_3^{(1)}, x_4^{(1)}; \delta_1)$$

$$(x_1^{(3)}, x_4^{(2)}, x_3^{(1)}, \delta_1^{(1)}; \delta_2),$$

We find that the geometry is $\mathbb{P}^2 \cup Bl_8\mathbb{F}_3$, with a ruling yieling a 5d IR description

$$SU(2)_0 - SU(2) - [5]$$

$G_F = E_8$ agrees with [Apruzzi, Lawrie, Lin, SSN, Wang].

Using 5-brane webs we can confirm the MQ

[van Beest, Bourget, Eckhard, SSN].

Note this is a descendant of the rank $N = 2 E_8$ -theory, which also has a description as [1] - SU(2) - SU(2) - [5].

Example 3:

Applications to theories that so far have no MQ using brane-webs:

$$F(x) = x_1^2 + x_2^5 + x_3^5 + x_4^5 = 0, \qquad (q_1, q_2, q_3, q_4) = \left(\frac{1}{2}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)$$

Crepant resolution yields that the IR description is one of the three 'dual' gauge theories:

$$SU(3)_{\frac{9}{2}} + 5\mathbf{F}$$
, $Sp(2) + 3\mathbf{F} + 2\mathbf{AS}$, $G_2 + 5\mathbf{F}$.

Using the same logic as above we find the $MQ^{(5)}$ to be

Curiosities: Rank 0 theories

Many IHS have remanent terminal singularities:

IHS with no crepant blowups are rank 0 theories.# For higher rank there can be remnant terminal singularities – coupling of rank 0 to higher rank.

Example: Close cousin to the E_6 rank 1 theory:

$$F(x) = x_1^3 + x_2^3 + x_3^3 + x_4^5 = 0.$$

One blowup

$$(x_1, x_2, x_3, x_4; \delta_1).$$

The resolved singularity has a terminal singularity at $\delta_1 = x_1 = x_2 = x_3 = 0$:

$$x_1^3 + x_2^3 + x_3^3 + \delta_1^2 = 0.$$

This is in fact in IIB the theory of type Argyres-Douglas (AD) $[A_2, D_4]$.

This theory has

$$r = 1, \qquad f = 0, \qquad d_H = 16, \qquad \Gamma_m^{(3)} = \mathbb{Z}_5.$$

Interpretation in IIB is simply that the AD theory $[D_4, E_8]$ has along a sublocus on the HB a residual SCFT of type AD $[A_2, D_4]$.

In 5d further analysis of this model needs to determine, whether this is a new rank 1 5d SCFT. Possibly this is a discrete \mathbb{Z}_5 -gauging of a Seiberg theory.

This effect is rather prominent even within the IHS class of canonical singularities.

Summary and Outlook

5d SCFTs provide a perfect setup, where geometric methods inform our understanding of QFTs.

To fully explore their moduli spaces, and properties, we need a variety of geometric and string theoretic tools: resolution and deformation of singularities, brane-webs/dualities.

Key open questions:

- Role of the rank 0 theories: e.g. as discrete gauging, and relation to 3-form symmetries.
- Mirrors of IHS?
- Mixed Coulomb/Higgs branches
- Generalization of deformations beyond IHS, e.g. to generalized toric models, and identify the associated geometry.