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5d Gauge Theories

1. d > 4: Gauge coupling in

L = − 1

4g2
TrF 2 + · · ·

mass dimension [g2] = d− 4 < 0

2. The interactions are irrelevant at long distances (’IR free’). Naive
expectation: these are boring theories.

3. No interacting CFTs?

Evidence to the contrary.



5d CFTs

1. UV: g→∞

2. 5d gauge theories: effective theories on extended Coulomb branch

3. Evidence:
Find description that extrapolates to strong coupling
⇒ string/M-theory



5d N = 1 Gauge Theories and SCFTs

5d N = 1 are IR descriptions of 5d N = 1 SCFTs in the UV:

? Gauged: Ggauge

? Global: GIR
F ×U(1)T ⊂ GUV

F .

? Reps:

Vector multiplet in the adjoint of Ggauge: A = (Aµ, φ,λ)

Hyper-multiplet in (R,RF) of Ggauge ×GIR
F : h = (h⊕ hc,ψ) .

? Vacuum moduli spaces:
1. Coulomb branch (CB): vevs of φ and masses of mF of h.
2. Higgs branch (HB): vevs of the hyper-multiplets.



Example: Rank 1 Seiberg Theories

• Ggauge = SU(2) with NF fundamental hyper-multiplets, NF = 0, · · · ,7

• GIR
F = SO(2NF )

• UV: enhanced ‘super-conformal flavor symmetry’

GIR
F ×U(1)T ↪→ GUV

F = ENF+1

• NF to NF − 1 by giving mass mF for a matter multiplet and
decoupling (mF →∞).
⇒ (φ,mF ) parametrize the extended Coulomb branch



5d SCFTs and Canonical Singularities

A 5d superconformal field theory is defined as [Seiberg][Morrison, Seiberg]

T 5d(X) = M-theory on X×R1,4 ,

where X = canonical singularity (isolated or not).

Canonical singularity←→ SCFT

Kähler cone←→ (Extended) Coulomb Branch

Complex deformations←→ Higgs Branch



5d SCFTs and SQFTs
# 5d QFT, geometry and webs:
[Seiberg][Morrison, Seiberg], [Intrilligator, Morrison, Seiberg][Klemm, Mayr,

Vafa][Aharony, Hanany, Kol][Bergman, Rodriguez-Gomez][Bergman, Zafrir]

And recent works by [Kim, Lee, Hayashi, Zafrir, Bergman, Yagi, Hwang, Park,

Yonekura, Tachikawa, Rodriguez-Gomez, Hanany, Bourget, Cabrera, Yagi]...

# Recently, approach using 6d SCFT on S1:
[Xie, Yau][Del Zotto, Heckman, Morrison][Jefferson, Kim, Vafa, Zafrir][Jefferson, Katz, Kim,

Vafa][Bhardwaj, Jefferson][Apruzzi, Lin, Mayrhofer][Closset, Del Zotto, Saxena] [Apruzzi,

Lawrie, Lin, SSN, Wang]3[Apruzzi, SSN, Wang] [Bhardwaj][Eckhard, SSN, Wang]....



Coulomb Branch

X admits resolutions (crepant or with residual terminal singularities)

X̃ −→ X

• Gauge Symmetry:
(compact) exceptional divisors

Sa , a = 1, · · · , r = b4(X̃) = rank of the SCFT

• Global (flavor) symmetry:
non-compact divisors Dα, α = 1 · · · , f = flavor rank,

b2(X̃) = r+ f .

• Free hypermultiplets: for P1 ↪→ Sa→ Σga ,

b3(X̃) = 2
∑
a

ga ,

contribute b3/2 free hypers.



• Dynamics on the Coulomb Branch:

Pre-potential: φi, i = 1, · · · , r CB vevs

F =

(
1

2g2
Cijφ

iφj +
k

6
dij`φ

iφjφ`
)

+
1

12

( ∑
α roots

|φ · α|3 −
∑
λF∈RF

|λF · φ+mF|3
)
,

Cij = TrFTiTj , dijk = 1
2

TrF((Ti(TjTk + TkTj)), Ti = Cartans of Ggauge.

The prepotential determines the effective Lagrangian

Leff = Gij dφ
i ∧ ?dφj +Gij F

i ∧ ?F j +
cij`

24π2
Ai ∧ F j ∧ F `

where Gij = ∂i∂jF and CS-levels cij` = ∂i∂j∂`F .

Relation to Geometry: [Intriligator, Morrison, Seiberg]

∂i∂j∂`F = Si ·X̃ Sj ·X̃ Sk .



• Wrapped M2-branes on rational curves:

1. normal bundle degree (−2,0): W-bosons

2. normal bundle degree (−1,−1): matter hypermultiplets

• SCFT:
1

g2a
∼ Volume(Sa)→ 0

Many geometric tools: Toric CY, Elliptic fibrations, Characterize
collapsable complex surfaces, Isolated Hypersurface Singularities (IHS)

Things to get from the CB:

• IR gauge theory description (ruling of surfaces)

• UV dualities

• BPS states (GV invariants)

• Symmetries: 0-, 1-form symmetries



Symmetries from CB

0-form symmetries:

Gauge Theory has global symmetry (IR flavor symmetry) GIR
F and

topological U(1)T

j =
1

8π2
? TrF ∧ F

Examples:
SU(Nc) +NFF has GIR

F = U(NF ), Sp(N) +NFF has GIR
F = SO(2NF ).

UV fixed points:
GUV
F ⊃ GIR

F ×U(1)T

GUV
F : Encoded in the Combined Fiber Diagram (CFD):

Graph made of rational curves Ci = Di · (
∑
α Sα), where (−2,0) curves

are marked vertices, and intersections give rise to GF , and (−1,−1)

curves are hypermultiplets.

[Series of papers with: Apruzzi, Lawrie, Lin, Yi-Nan Wang, Eckhard, SSN]



Higher-Form Symmetries

Gauge theories can have generalized global symmetries
[Gaiotto, Kapustin, Seiberg, Willett].

In d dimensions: 0-form symmetry (ordinary symmetry), charged
operator that is point-like with

q =

∫
Sd−1

ρ

A q-form symmetry: charged operators are dimension q and with
topological surface operators of co-dimension q+ 1.

Higher form symmetries for 5d SCFTs: [Morrison, SSN, Willett]

[Albertini, Garcia-Extebaria, Hosseini, Del Zotto] [Closset, SSN, Y-N Wang]



Higher Form Symmetries in Gauge Theories

5d Gauge Theories:

• Gauge theories (no matter) with simply-connected gauge group G
and center Z have an (electric) 1-form symmetry Γ = Z.

Charged operators:
Wilson loops in rep R, transform under Γ as R does under Z.

• If π1(G) = Γm 6= 1 then the theory as a 2-form (magnetic) symmetry.

Can pass from one to the other by gauging (sum over background values
of gauge field H2(M5,Γ)).

Example:
SU(N) has a Γ = ZN , SU(N)/ZN has Γm = ZN 2-form symmetry.



q-Form Symmetry from Geometry

M-theory on X, boundary five-manifold ∂X. 1-form symmetry:

# M2-branes on compact 2-cycles: H2(X)

mass m <∞ particles in 5d

# M2-brane on non-compact 2-cycle: H2(X, ∂X)

infinite mass particle, worldline defines line operator.
Some line operators could be screened by dynamical particles:

Γ(1) = H2(X, ∂X)/H2(X)

For q-form symmetry: e = M2, m = M5-branes wrapped

Γ(q)
e = h(k=3−q)

Γ(q)
m = h(k=6−q)

h(k) = (Hk(X, ∂X)/Hk(X))



q = −1 : Γ(−1)
e = h(4)

q = 0 : Γ(0)
e = h(3) , Γ(0)

m = h(6)

q = 1 : Γ(1)
e = h(2) , Γ(1)

m = h(5)

q = 2 : Γ(2)
e = h(1) , Γ(2)

m = h(4)

q = 3 : Γ(3)
e = h(0) , Γ(3)

m = h(3)

q = 4 : Γ(4)
m = h(2) .



Γ(1) from intersection theory

Γ(1) = H2(X, ∂X)/H2(X)

This can be computed on the Coulomb branch. Poincaré-Lefschetz
duality maps this to

Γ(1) = Zb4/M4Zb2

whereM4 is the intersection matrix between compact curves C and
compact divisors S in X:

M4 = (S ·C)r×(r+f)



Example: Toric CY3

Toric fan defined by external vertices vα, α = 1, · · · , f + 3 and internal
vertices v̂i, i = 1, · · · , r. In this case Γ is computed from the fan

Γ = Zf+3/ImA, A =


v1

...

vf+3


Compute Smith normal form of A to find

Γ = Zα1
⊕Zα2

⊕Zα3
.



Examples

• SU(2)0: A = ((1,0,1), (−1,0,1), (0,1,1), (0,−1,1)).

A =

 1 0 0 0

0 1 0 0

1 0 1 0

−1 1 −1 1


 1 0 0

0 1 0

0 0 2

0 0 0


 1 0 −1

0 1 −1
0 0 1


⇒ Γ = Z2.

• Likewise SU(N)k: Γ = Zgcd(N,k) X



Global Symmetries beyond IR-description

Advantages of the geometric formulation:

1. Γ although computed on the CB, can capture symmetries of the UV
⇒ seems to be applicable to UV fixed point

2. Non-Lagrangian theories: Rank 1: P2-Seiberg theory.

Toric fan: A = ((−1,0,1), (0,−1,1), (1,1,1) results in

P2 : Γ = Z3 (GF = 1) .

We will see examples of 3-form symmetries in 5d SCFTs on the Higgs
branch.



Coulomb branch

• Gauge theory descriptions:
Not necessarily unique, from rulings of compact divisors.

• SCFT flavor symmetry and decoupling

• Higher form symmetries:
Computable in terms of the ∂X or resolution.



Geometric Setup CB HB Symmetries Scope

Toric CY X X X Limited Class of models

Elliptic CY X - X All known examples (from 6d)

Collapsable Surfaces X - Some Bottom-up, not CY geometry

IHS X X ‘X‘ Special class, new effects

Brane-Webs X X X After Elliptic CY: largest class

Not always Geo.
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Higgs Branch

Higgs Branch (HB) of the SCFT T 5d(X) is a hyper-Kähler cone

HB[T 5d(X)] .

DimH = dH . Unlike the CB, metric on the HB receives quantum
corrections from M2-instantons.

Geometric characterization in terms of deformation of X

X̂

Geometric Framework:

• Isolated toric CY3

• Isolated Hypersurface Singularities (IHS)

Complementary approach:
recent progress using branewebs, determining the magnetic quiver and
Hasse diagram for 5d SCFTs with gauge theory IR descriptions [Bourget,

Cabrera, Hanany, Grimminger, Yagi, Zhong... ]



Interlude: Webs, Tropical Geometry, and Polygons

X =(Generalized) toric.

X
dual graph−→ WX = 5-brane web (tropical geometry)

Conjecture [Cabrera, Hanany, Yagi]:
∃ 3d N = 4 quiver gauge theory MQ(5) associatedWX, determined by
irreducible subwebs, such that

CB
[
MQ(5)

]
= HB

[
T (5d)(X)

]
.

Quantum corrections on LHS are understood [Cremonesi, Hanany, Zaffaroni],
and [Nakajima][ Braverman, Finkelberg, Nakajima][Bullimore, Dimofte, Gaiotto]

Natural question: what is the MQ(5) in terms of X?

• Strictly convex: deformations in terms of Minkowski sums [Altmann].

• Formulate the rules onWX in terms of the generalized toric polygon
PX for X: algorithm to determine the MQ and Hasse diagram [van

Beest, Bourget, Eckhard, SSN].



Higgs Branch from Colored Polygons

An Example from [van Beest, Bourget, Eckhard, SSN]:
Isolated toric CY X, with strictly convex polygon PX

1. Determine all Minkowski sum decompositions of PX: PX = +iPci

2. Each summand is associated with a color ci, and each Minkowski
sum decomposition induces an edge coloring

E3-theory (i.e. SU(2) + 2F IR description):

E3 : = + + = +

.

3. An edge coloring is consistent if it extends to a tasselation of P into
triangles of one color and bi-colored parallelograms:



4. Each color→
1

in the MQ.

5. The number of edges kc1,c2 between nodes associated to c1 and c2 are
determined by the mixed volume, i.e.

kc1,c2 = Area(Gc1,c2) = area of the c1, c2 bicolored paralellogram .

In the dual tropical geometry: stable intersection of tropical curves.

MQ(E3) =
1 1

1 ⋃ 1 1

.

Higgs branch: a2 ⊕ a1 (minimal nilpotent orbits).

[van Beest, Bourget, Eckhard, SSN]: algorithm for any (not necessarily strictly)
convex toric and generalized toric (‘dot diagram’) polygon.

Open question: derive these rules from the deformation theory of X.



Deformations of Isolated Hypersurface Singularities (IHS)

We propose [Closset, SSN, Y-N Wang] a geometric approach for IHS to
determine the MQ from X̂.

Let X be a canonical IHS. Classified by [Yau, Yu][Xie, Yau][Davenport, Melnikov]

X : {F (x1, x2, x3, x4) ≡ F (x) = 0} ⊂ C4 .

1. F is quasi-homogeneous, i.e. xi → λqixi then

F (λqixi) = λF (x) , qi ∈ Q>0 .

2. Singular at an isolated point.

3. Canonical⇒
∑4
i=1 qi > 1 or

ĉ =
∑4
i=1(1− 2qi) < 2 [Shapere, Vafa]

19 different families of IHS, with many redundancies.



Deformation

Deformation X̂ is characterized by the Milnor ring,

M(F ) = C[x1, x2, x3, x4]/dF ,

which is finitely generated for IHS of dimension µ =
∏4
i=1(q−1i − 1), with

X̂ : F (x) +

µ∑
l=1

tlxml = 0 , xml ∈M(F ) .

Deformed space has additional three-cycles

H3(X̂,Z) = Zµ , µ = Milnor number .

Define the spectral numbers `l:

`l = Ql +
∑
i

qi − 1 , Ql =
4∑
i=1

qiml,i .



Mixed Hodge structure from monodromy acting on H3:

`l < 1 : dimH1,2(X,Z) = r̂

`l = 1 : dimH2,2(X,Z) = f

`l > 1 : dimH2,1(X,Z) = r̂ .

Higgs branch is given by the number of dynamical hypermultiplets,
which arise from `l ≤ 1 [Gukov, Vafa, Witten]

dimH(MH) = dH = r̂+ f .

f= flavor rank, as on the CB, via conifold transitions.



Higgs Branch from Duality

To determine the hyper-Kähler structure: use dualities.

Proposal in [Closset, SSN, Y-N Wang]:
Consider Type IIB on X. This is a 4d N = 2 SCFT T 4d(X).

Compactify both theories to 3d N = 4, the ‘electric quiver(ine)s’

• EQ(5d) ≡ T 5d(X) on T 2

• EQ(4d) ≡ T 4d(X) on S1

These theories are related by T-duality, which realizes 3d mirror
symmetry [Hori, Ooguri, Vafa].

Let: MQ(5d) ≡ 3d mirror of EQ(5d), MQ(4d) ≡ 3d mirror of EQ(4d).

Conjecture:

MQ(5d) = EQ(4d)/U(1)f , MQ(4d) = EQ(5d)/U(1)f ,



TX
5d

T2

3d N=4 theory
EQ(5)

TX
4d

M-theory on X: Type IIB on X:

S1

3d N=4 theory
EQ(4)

3d Mirror Symmetry 3d MS

3d N=4 theory
MQ(5)

3d N=4 theory
MQ(4)

U(1)f  gaugin
g

MQ(5) = EQ(4)/U(1)f



TX
5d

T2

3d N=4 theory
EQ(5)

TX
4d

M-theory on X: Type IIB on X:

S1

3d N=4 theory
EQ(4)

3d MS 3d MS

3d N=4 theory
MQ(5)

3d N=4 theory
MQ(4)

U(1)f  gaugin
g

MQ(5) = EQ(4)/U(1)f

dim(CB, HB)

(r, dH= r+f)^

(dH= r+f, r)^

(r, r+f)^

(r+f, r)̂



Magnetic Quiver(ine)s and 5d Higgs Branch

From this conjecture we identify the MQ= as the magnetic quiver(ine) of
the 5d SCFT T 5d, which whenever MQ(5d) is a Lagrangian quiver should
agree with [Bourget, Cabrera, Hanany, Grimminger, Yagi, Zhong...]

We derive this from a geometric point of view:

HB
[
T 5d(X)

]
= CB

[
MQ(5d)

]
= CB

[
EQ(4d)/U(1)f

]
.

Bonus 4d result: HB(T 4d) = CB(MQ(4d)).

The M2-instantons, which quantum correct the metric on the classical
Higgs branch are encoded in the monopole operators studied in
[Cremonesi, Hanany, Zaffaroni] in 3d N = 4.



5d Higgs branch from EQ for 4d SCFT

The strategy to compute the Higgs branch of T 5d(X):

• Consider 4d SCFT T 4d = IIB on X.

• Compute EQ(4d):
4d SCFT Lagrangian SCFT, then EQ simply dimensional reduction.
Using geometric engineering in 4d: [Shapere, Vafa][Shapere, Tachikawa]

1. CB of T 4d: Deformations X̂

2. CB spectrum of operators from spectrum of the singularity

∆l =
Ql∑4

i=1 qi − 1

• Gauge U(1)f to obtain MQ(5), whose CB is the HB of T 5d



Example 1: E-strings

Rank N E8 Seiberg theories:

XE6 : x31 + x32 + x33 + x3N4 = 0

XE7 : x21 + x42 + x43 + x4N4 = 0

XE8
: x21 + x32 + x63 + x6N4 = 0

IR-description: Sp(N) + (n− 1)F + AS.
Resolution by N exceptional divisors.

f r dH r̂ d̂H

E6 6 N 12N − 1 12N − 7 N + 6

E7 7 N 18N − 1 18N − 8 N + 7

E8 8 N 30N − 1 30N − 9 N + 8



Example: Rank N E6-theory

The 4d SCFT on XE6 was shown in [Katz, Mayr, Vafa] to have a gauge theory
description

G =
∏
dk

SU(dkN) .

The spectrum e.g. for N = 2:

∆ 6 5 4 3 2

# 1 1 4 4 7

SU(L) contributes:
∆ = {L,L− 1, · · · ,2}. N 2N 3N 2N N

2N

N

This quiver with SU(dkN) gauge nodes is the electric quiver EQ(4). The
same quiver with U(dkN) nodes is the magnetic quiver MQ(5).



Example 2: Rank 2 with GF = E8

F (x) = x21 + x52 + x103 + x3x
3
4 = 0 , (q1, q2, q3, q4) =

(
1

2
,
1

5
,

1

10
,

3

10

)
µ = 84 , r = 2 , f = 8 , dH = 46 , r̂ = 38 .

Computing the scaling dimensions of T 4d:

∆ 1 2 3 4 5 6 7 8 9 10

# 8 8 7 7 5 4 3 2 1 1

consistent with a 4d Lagrangian SCFT with

G = SU(10)× SU(8)× SU(7)× SU(6)× SU(5)× SU(4)2 × SU(2) .

4d Quiver, which is the same as EQ(4d) in 3d, with SU(L) nodes:

2 4 6 8 10

5

7 4 1



MQ(5) given by gauging U(1)8, i.e. the quiver with U(L) nodes:

2 4 6 8 10

5

7 4 1 .

The Higgs branch of T (5d) has a Hasse diagram – the partially ordered set
of symplectic leaves of the HB – following from this

e7

e8

Implies GF = E8.



Coulomb branch and IR-description

By resolving the singularity

(x
(2)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 ; δ1)

(x
(3)
1 , x

(2)
4 , x

(1)
3 , δ

(1)
1 ; δ2) ,

We find that the geometry is P2 ∪ Bl8F3, with a ruling yieling a 5d IR
description

SU(2)0 − SU(2)− [5]

# GF = E8 agrees with [Apruzzi, Lawrie, Lin, SSN, Wang].

# Using 5-brane webs we can confirm the MQ
[van Beest, Bourget, Eckhard, SSN].

# Note this is a descendant of the rank N = 2 E8-theory, which also has a
description as [1]− SU(2)− SU(2)− [5].



Example 3:

Applications to theories that so far have no MQ using brane-webs:

F (x) = x21 + x52 + x53 + x54 = 0 , (q1, q2, q3, q4) =

(
1

2
,
1

5
,
1

5
,
1

5

)
.

Crepant resolution yields that the IR description is one of the three ‘dual’
gauge theories:

SU(3) 9
2

+ 5F , Sp(2) + 3F + 2AS , G2 + 5F .

Using the same logic as above we find the MQ(5) to be

Spin(5)

Sp(3)

Spin(11)

Sp(2)

Spin(1)

Sp(4)

Spin(9)

Sp(3)

Spin(7)

Sp(2)

Spin(5)

Sp(1)

Spin(3)



Curiosities: Rank 0 theories

Many IHS have remanent terminal singularities:

# IHS with no crepant blowups are rank 0 theories.
# For higher rank there can be remnant terminal singularities – coupling
of rank 0 to higher rank.

Example: Close cousin to the E6 rank 1 theory:

F (x) = x31 + x32 + x33 + x54 = 0 .

One blowup
(x1, x2, x3, x4; δ1) .

The resolved singularity has a terminal singularity at
δ1 = x1 = x2 = x3 = 0:

x31 + x32 + x33 + δ21 = 0 .

This is in fact in IIB the theory of type Argyres-Douglas (AD) [A2,D4].



This theory has

r = 1, f = 0, dH = 16 , Γ(3)
m = Z5 .

Interpretation in IIB is simply that the AD theory [D4,E8] has along a
sublocus on the HB a residual SCFT of type AD [A2,D4].

In 5d further analysis of this model needs to determine, whether this is a
new rank 1 5d SCFT. Possibly this is a discrete Z5-gauging of a Seiberg
theory.

This effect is rather prominent even within the IHS class of canonical
singularities.



Summary and Outlook

5d SCFTs provide a perfect setup, where geometric methods inform our
understanding of QFTs.

To fully explore their moduli spaces, and properties, we need a variety of
geometric and string theoretic tools: resolution and deformation of
singularities, brane-webs/dualities.

Key open questions:

• Role of the rank 0 theories: e.g. as discrete gauging, and relation to
3-form symmetries.

• Mirrors of IHS?

• Mixed Coulomb/Higgs branches

• Generalization of deformations beyond IHS, e.g. to generalized toric
models, and identify the associated geometry.


