VT Physics CNP Research Day, May 2019

Introduction to NuLat: A Compact, Segmented, Mobile Anti-neutrino Detector

Presented by Tristan Wright for the NuLat Collaboration:

J. Blackmon², R. Dorrill⁶, G.R. Jocher⁵, J.G.Learned⁶, V.Li¹, D.Markoff⁴, J.Maricic⁶, S. Matsuno⁶, R.Milincic⁶, H.P.Mumm³, S.Negrashov⁶, M.L.Pitt⁷, C.Rasco⁹, G.Varner⁶, R.B.Vogelaar⁷, T.Wright⁷, Z.Yokley⁷

1:LLNL, 2:LSU, 3:NIST Gaithersburg, 4:NCCU, 5:Ultralytics LLC, 6:University of Hawaii, 7:Virginia Tech, 8: ORNL

Adapted from talks by Dorrill, Learned, and Vogelaar

NuLat Motivation

Probe reactor anomalies

- Sterile neutrino search
- Precision v_e energy spectrum measurement
- Demonstrate reactor monitoring capabilities
 - Security monitoring
 - Commercial burn-up monitoring
- Investigate fast neutron directionality capabilities
 - Detection of special nuclear material
- Exceptional background rejection
 - full 3D precision segmentation (256 cubic centimeters)
 - complete event 'topology' (dE,x,y,z,t)
 - exceptional light collection (600 pe/MeV)
 - sub-nanosecond timing

Outside North Anna Power Station... core 24m distant

NIST NCNR Reactor 5m distant

Classic \overline{v}_e Signature

Raghavan Optical Lattice

- light channeling via total internal reflection
- full 3D light collection along principle axes
 - Fewer degeneracies

-

Segmentation

- proven technique: micro-LENS
 - operational liquid scintillator ROL detector located at KURF
 - Cell size = $(3.25^{\circ})^3$
 - thin Teflon walls (0.002")
 - partial light channeling (n=1.34 and 1.49)

LENS 6x6x6 demonstration project Now defunct solar neutrino detector project

- NuLat (solid scintillator)
 - Aim for 10x10x10 cubes
 - effectively 1000 individual detectors
 - 2.5 inch plastic scintillator cubes
 - 0.5% ⁶Li by wt. loading (Eljen)
 - VM2000 reflective film 'dots' to maintain air-gap
 - *Total* light channeling (n=1 and 1.54)
 - Easily scalable to larger mass
 - True zero-mass wall no energy loss
 - (Have some very preliminary schemes for kiloton scale.)

Segmentation 2

 Log plot of light output on the (X-Y) face of a mirrored NuLat design via deposition of 2 MeV in the central cell

- Most light goes to 6 direct channels!
- The amount of light detected in the plane but off the main channel is at the level of < 5%
- The cube containing the energy deposit is identified uniquely by amplitude alone
- Detected light may further be identified by signal timing, permitted location (such as the gammas from positron annihilation must be on average in opposite directions)

NuLat 15 Cube Full Channel Module Testing

Unique Start Signal

- Positron plus annihilation gammas
 - large single cell (or two), small halo (0.1-1.0 MeV total), in that time order
 - rejects most gammas (primary reduction via passive shielding when close to reactor)
 - single Compton within detector with no halo
 - multiple Compton within detector
 - with too large a halo
 - single P.E. effect with no halo
 - rejects most cosmogenic backgrounds
 - pulse-shape discrimination rejects fast
 - Neutrons by PSD
 - ⁹Li, ⁸He are β emitters with no annihilation
 - pair production reduced by primary shielding

Energy Resolution

- \Box E_v= E_{e+} + 1.8 MeV
- □ full positron energy in one cell or at most two (vertex cell)
- minimal contamination by annihilation gammas in vertex cell
- allows excellent neutrino energy resolution throughout the *complete* detector

Event Topology

Reconstruction of a typical 2 MeV positron event.

note: 3D allows digital separation of events *along* channel

Average single-cell prompt response to a uniform3.8 MeV anti-neutrino flux.no fiducial cut

Unique Stop Signal

- Lithium-6 doped PVT
 - 7 µs time correlation
 0.5% by wt. ⁶Li PVT
 - mono-energetic ~400 keV_{ee}
 - single cell stop tag
 - n/gamma PSD separation
 - 23% n capture in same cell as positron
 - 60% n capture in same cell as positron plus the six facing cells
 - 940 barns
 - Work underway on custom
 'geometric' trigger using UH IRS3d
 electronics

Neutron Capture Time in ⁶Li PVT Scintillator

Unique Topology for the Ensemble of IBD Events

PSD in ⁶Li Plastic

Eljen LLNL based EJ-200 ⁶Li PSD characterization

Better energy resolution results in better background rejection.

Readout from IRS3d Custom Digitizers (developed at UH)

- SCROD board stack with IRS3d chips similar to those used in Belle – 100 ps timing resolution
- Separate Data and triggering paths
- 16 chips per board stack -> seen at right
- 8 channels per chip, 2-4 gigasamples / s (2.73 GSa/s, 366 ps)
- 128 channels per stack
- Many channels in a small space
- Downside: heat!
- Firmware under development at VT for geometric trigger

²²²Rn Internal Calibration

- ²²⁶Ra ²²²Rn-Generator
- Fill airgaps with ²²²Rn rich gas
- Same/adjacent cell

²¹⁴Bi $\rightarrow \beta$ - + ²¹⁴Po followed by (t_{1/2}=164µs) ²¹⁴Po $\rightarrow \alpha$ + ²¹⁰Pb

- Close temporal and spatial structure to that of a antineutrino capture
- Provides PSD stop tag
- Mean β E = 642keV
- Mean α E ~ 700keVee
- Characterize surface scintillation
 effects

ROL 5³ Antineutrino Detector

- Ongoing tests with Lithiated plastic
- 4 faces instrumented with PMTs, readout (125 PMTs)
- Calibrations with Rn, ⁶⁰Co, AmBe
- Liquid version being developed
- Construction to be completed and testing underway 2019
- Deployment:
 - NIST: L ≈ 4.7m,P = 20 MW

Progress Photos!

Conclusions

- NuLat design:
 - Precision topology capabilities E(x,y,z,t)
 - Short mean time for coincident signal
 - Pulse shape discrimination for both start and stop signals
 - Several methods of evaluating systematics
- NuLat addresses
 - Reactor neutrino physics
 - Reactor monitoring
 - Special nuclear material safeguards

Backup Slides

Additional System Electronics

- Clock and Triggering Board
 - Provides a low-jitter clock to front-end modules ($\sigma_t < 2 \text{ ps}$)
 - Issues system triggers to all
 boardstacks based on parameters
 set by the user
 - Can distribute pulses for testing and calibration
- Dell server and other computers for storing data, remote operation
- Laser calibration system

The clock and trigger board, designed by Serge Negrashov here at UH

Keeping it Cool if needed

- We use the following:
 - Koolance hard drive chiller plates
 - An "Advantage" water chiller unit
 16 °C, 2 gallon per min
- T_{inside} \rightarrow 20-35 °C
- $T_{chips} \rightarrow 35-55 \ ^{\circ}C$

- 84 boards total, 192 IRS chips, along with amplifiers, PMTs, etc. produce ~ 400 W heat
- The mTC's cover and shielding restrict air flow, making cooling more difficult
- Fans / air flow isn't enough!

Keeping it Clean: The "Cave"

- . Designed to shield the mTC near reactors
- Can be assembled and disassembled when needed, can be moved on wheels (though it weighs 40 tons so it's slow!)
- Comprised of six nested "cubes", giving dimensions: 1.8m x 2m x 2.7m
- Layers alternate between borated-
- polyethylene sheets and steel plates
- . Geant4 used to model backgrounds with
- and without shielding

	normal	shielded	normal	shielded	attenuation
Type	#/mTC/s		$\#/cm^2/s$		%
Muon	15	1.72	.017	2.0×10^{-3}	88.2%
Neutron	10151	0.082	12	9.7×10^{-5}	99.9%
Gamma	860	9.03	1.0	1.1×10^{-2}	98.9%

