Benefits of a Near Detector for JUNO

REBEKAH PESTES

CNP Research Day

May 10, 2019

Virginia Tech

Neutrino Oscillation Parameters

- 6 independent oscillation parameters in three-flavor oscillation
 - 3 mixing angles: θ_{12} , θ_{23} , θ_{13}
 - 2 mass-differences: Δm_{21}^2 , Δm_{31}^2
 - 1 CP-violating phase: δ
- Only two remain largely unknown:
 - Sign of Δm_{31}^2
 - 8

Jiangmen Underground Neutrino Observatory

JUNO

Muon Tracker

Outer Vessel

Water Pool

- Detector needs 3%/√E energy resolution to determine the neutrino mass hierarchy
- 20 kton of Liquid Scintillator
- Measure \overline{v}_e disappearance from 2 reactors (each at 53 km): $P(\overline{v}_e \rightarrow \overline{v}_e) = 1 - \sin^2(2\theta_{12})\cos^4\theta_{13}\sin^2\left(\Delta m_{21}^2\frac{L}{4E}\right)$ $-\sin^2(2\theta_{13})\left[\cos^2\theta_{12}\sin^2\left(\Delta m_{31}^2\frac{L}{4E}\right) + \sin^2\theta_{12}\sin^2\left(\Delta m_{32}^2\frac{L}{4E}\right)\right]$

20 kton LS

Reactor Antineutrino Anomaly

• Disagreement between measured antineutrino energy spectrum from nuclear reactors and updated theoretical calculations

Reactor Antineutrino Anomaly Cont'd

- Possible Implications:
 - shows ignorance of what is going on in the reactor
 - (i.e. reactor v_e spectrum)
 - something is happening to the neutrinos on short length scales after creation
 - (e.g. sterile v)

JUNO Cont'd

- Had been proposing to use Daya Bay data to obtain a reference neutrino energy spectrum
 - Daya Bay used virtually identical detectors for near and far detectors
 - Spectrum measured at energy resolution of $8\%/\sqrt{E}$

Possible Problem

- Fine structure in antineutrino energy spectrum coming from nuclear reactor
 - For single β-decay:

- Obscured at $8\%/\sqrt{E}$
- Possibly visible at $3\%/\sqrt{E}$

Dwyer, et al. (arXiv:1407.1281)

JUNO Simulations

- Used GLoBES
- JUNO's specs for far detector
 - 20 kt liquid scintillator
 - 53 km away from source
 - $3\%/\sqrt{E}$ energy resolution
- Added near detector
 - 5 ton liquid scintillator
 - 0.5 km away from source
 - Varied energy resolution

JUNO Simulations Cont'd

- Rate data divided into 100 energy bins $\phi_i^I \equiv \text{detection rate in } i\text{th bin}$
- Nuissance parameters added for each bin

$$\tilde{\phi}_{fit_i}^I = (1 + \xi_i) (\phi_{fit_i}^I)^o$$
, where $\phi_{fit_i}^I = \sum_j M_{ij} \tilde{\phi}_{fit_j}^I$

- Accounts for uncertainty in energy spectrum
- Accounted for non-linearity in detector energy response $\frac{E_{rec}}{E} = 1 + \sum_{k=0}^{n} \alpha_{k} E^{k}$
 - Allowed differences between detectors

JUNO Simulations Cont'd

- Huber-Mueller model used for source antineutrino energy spectrum
- Assumed normal hierarchy to be true for generating data
- Calculated χ^2 values for fits using the normal and inverted hierarchies

$$\chi^{2} = \sum_{i,I} \frac{\left(\phi_{true_{i}}^{I} - \phi_{fit_{i}}^{I}\right)^{2}}{\phi_{true_{i}}^{I}} + \sum_{j} \left(\frac{s_{j}}{\sigma_{j}}\right)^{2}$$

Consistency Check #1

- Used alternative spectra to generate data
 - Add up antineutrino spectra produced from a randomly chosen (with weights) sample of beta decay branches
 - Renormalize spectrum to match Huber-Mueller model at $8\%/\sqrt{E}$ energy resolution
- Fit data to Huber-Mueller model
 - Meddled with internal structures of GLoBES

Consistency Check #2

- No Near Detector
- Used Daya Bay's Covariance Matrix, instead

$$\chi_{A}^{2} = \sum_{i} \frac{\left(\phi_{true_{i}} - \phi_{fit_{i}}\right)^{2}}{\phi_{true_{i}}} + \sum_{j} \left(\frac{s_{j}}{\sigma_{j}}\right)^{2} + \sum_{n,m} \xi_{n} \left(V^{-1}\right)_{nm} \xi_{m}$$
$$\chi_{B}^{2} = \sum_{i} \frac{\left(\phi_{true_{i}}}{\phi_{true_{i}}} - \phi_{fit_{i}}\right)^{2}}{\phi_{true_{i}}} + \sum_{j} \left(\frac{s_{j}}{\sigma_{j}}\right)^{2} + \sum_{n,m} \alpha_{n} \left(V^{-1}\right)_{nm} \alpha_{m}$$
where $\alpha_{n} = \frac{\sum_{i \in N_{n}} \phi_{fit_{i}}^{o} \xi_{i}}{\sum_{i \in N_{n}} \phi_{fit_{i}}^{o}}$

Forero, et al. (arXiv:1710.07378)

Consistency Check #3

- No Near Detector
- Used the covariance matrix for an idealized detector, instead

$$\chi_C^2 = \sum_i \frac{\left(\phi_{true_i} - \phi_{fit_i}\right)^2}{\phi_{true_i}} + \sum_j \left(\frac{s_j}{\sigma_j}\right)^2 + \sum_{i,k} \xi_i \left(V^{-1}\right)_{ik} \xi_k$$

Summary

- Can't trust theoretical reactor antineutrino spectrum
- Antineutrino spectrum fine structure prevents extrapolation to lower energy resolutions
 - JUNO can't use Daya Bay's data
- So, JUNO needs a near detector in order to resolve the mass hierarchy
 - Energy resolution $\leq 3\%/\sqrt{E}$