Parity-Violating Electron Scattering – Recent Results and Future Prospects Mark Pitt, Virginia Tech

Virginia Tech Center for Neutrino Physics Research Day

IMF

Parity-Violating Electron Scattering – The Basics

- Longitudinally polarized electrons on unpolarized targets e, p, d, ⁴He, ⁹Be, ¹²C, ²⁰⁸Pb
- Measure small parity-violating cross section asymmetry (~ 20 ppb – 100 ppm)
- Elastic and deep inelastic kinematics
- Neutral weak current Standard Model test and select hadronic physics topics

Q_{weak} Experiment at Jefferson Lab

Q_{weak} **Collaboration:** 101 collaborators, 26 graduate students, 11 postdocs, 27 institutions

Qweak Experiment: parity-violating e-p elastic scattering to measure proton's weak charge

- Initial organizational meeting 2000
- Proposal 2001
- Design/construction 2003 2010
- Data-taking 2010 2012 (~ 1 year total beam time)
- Last experiment in Hall C in "6 GeV era"
- First results on proton's weak charge (based on 4% of the dataset) published in Phys. Rev. Lett. 111, 141803 (2013)
- Apparatus described in NIM A781, 105 (2015)
- Final results from the full Q_{weak} dataset
 published last month: Nature 557, 207 211 (2018)

The Hunt for New Physics

Two complementary approaches to searching for "New Physics"

"Energy frontier" - like LHC

→ Make new particles ("X") directly in high energy collisions

"Precision frontier" – weak charge, g-2(μ), etc.

 \rightarrow Measure indirect effects of new particles ("X") made virtually in low energy processes /

In LHC era, precision measurements of value:

- If LHC sees "new physics", precision measurements can help select among models
- If LHC sees no "new physics", precision measurements are sensitive to some types of new physics unobservable at LHC

 Z^0

Standard Model Weak Neutral Current Couplings

The Standard Model prescribes the couplings of the fundamental fermions to the Z boson:

For low energy electroweak tests ($Q^2 \ll M_z^2$), restrict to parity-violating e-q and e-e four-fermion contact interaction:

"Weak Charges" in Low Energy Neutral Current Tests

 Q^{e}_{W} and Q^{p}_{W} are suppressed in Standard Model \rightarrow increased sensitivity to new physics. ie. 6% on Q^{p}_{W} =0.0708 sensitive to **new neutral current amplitudes as weak as ~ 4x10⁻³ G**_F

5/10/2019

Ζ

Parity-Violating Electron Scattering Experiments – **A Brief History**

Pioneering (1978) early SM test SLAC E122 PVDIS – Prescott *et al.*

A = -152 ppm

Bates: ¹²C, Mainz: ⁹Be

(1998 - 2009)SAMPLE, GO, A4, HAPPEX

A ~ 1 – 50 ppm

Standard Model Tests

(2003 – present)

SLAC E158 Moller: A = - 131 ppb

JLAB Q_{weak} : A ~ -230 ppb, $\Delta A = 9$ ppb,

MOLLER -33 ppb, $\Delta A = 0.8$ ppb, $\Delta A/A = 2.4\%$ $\Delta A/A = 4\%$

5/10/2019

VT CNP Research Day

Qweak Experimental Apparatus

Qweak Apparatus During Installation

From Measured Asymmetry to Physics Asymmetry

Correct raw asymmetry for measured false asymmetry effects to get measured asymmetry

$$A_{\rm msr} = A_{\rm raw} + A_T + A_L + A_{\rm BCM} + A_{\rm BB} + A_{\rm beam} + A_{\rm bias}$$

Correct measured asymmetry for polarization, backgrounds, acceptance, etc. to get

ep physics asymmetry

 $A_{raw} = \frac{Y^{+} - Y^{-}}{Y^{+} + Y^{-}}$

$A = R + \frac{A_{msr}}{P} - \sum_{i=1,3,4} f$	$f_i \square$
$A_{ep} = n_{\text{tot}} - \frac{1 - \sum_{i=1}^{4} f_i}{1 - \sum_{i=1}^{4} f_i}$	

 $R_{\rm tot} = R_{\rm RC} R_{\rm Det} R_{\rm Acc} R_{Q^2}$

Quantity	$\operatorname{Run} 1$	Run 2
$A_{\rm raw}$	$-192.7 \pm 13.2 \text{ ppb}$	-170.7 ± 7.3 ppb
A_{T}	$0 \pm 1.1 \text{ ppb}$	0 ± 0.7 ppb
A_{L}	$1.3 \pm 1.0 \text{ ppb}$	$1.2 \pm 0.9 \text{ ppb}$
$A_{\rm BCM}$	$0 \pm 4.4 \text{ ppb}$	0 ± 2.1 ppb
$A_{\rm BB}$	3.9 ± 4.5 ppb	$-2.4 \pm 1.1 \text{ ppb}$
$A_{\rm beam}$	$18.5 \pm 4.1 \text{ ppb}$	$0.0 \pm 1.1 \text{ ppb}$
$A_{\rm bias}$	$4.3 \pm 3.0 \text{ ppb}$	$4.3 \pm 3.0 \text{ ppb}$
$A_{\rm msr}$	$-164.6 \pm 15.5 \text{ ppb}$	$-167.5 \pm 8.4 \text{ ppb}$
Р	$87.66 \pm 1.05~\%$	88.71 ± 0.55 %
f_1	$2.471 \pm 0.056~\%$	$2.516 \pm 0.059~\%$
A_1	$1.514\pm0.077~\rm{ppm}$	$1.515 \pm 0.077 \text{ ppm}$
f_2	$0.193 \pm 0.064~\%$	$0.193 \pm 0.064~\%$
f_3	$0.12 \pm 0.20~\%$	0.06 ± 0.12 %
A_3	$-0.39\pm0.16~\rm{ppm}$	$-0.39\pm0.16\mathrm{ppm}$
f_4	$0.018 \pm 0.004~\%$	$0.018 \pm 0.004~\%$
A_4	-3.0 ± 1.0 ppm	$-3.0 \pm 1.0 \mathrm{ppm}$
$R_{\rm RC}$	1.010 ± 0.005	1.010 ± 0.005
$R_{\rm Det}$	0.9895 ± 0.0021	0.9895 ± 0.0021
$R_{ m Acc}$	0.977 ± 0.002	0.977 ± 0.002
R_{Q^2}	0.9928 ± 0.0055	1.0 ± 0.0055
$R_{\rm tot}$	0.9693 ± 0.0080	0.9764 ± 0.0080
$\sum f_i$	$2.80 \pm 0.22~\%$	2.78 ± 0.15 %

Run 1 and 2 were statistics limited

Dominant systematic errors were both expected and unexpected (as can happen when pushing the boundaries in precision):

Expected and planned for:

- Beam Asymmetries A_{beam}
- Aluminum target windows A₁

Unexpected but symmetry and auxiliary background detectors made them manageable

- Beamline background asymmetries A_{BB}
- Rescattering bias A_{bias}

Blinded analysis

Run 1 and 2 each had its own independent "blinding factor" (additive offset in range ±60 ppb) to avoid analysis bias.

Un-Blinded Analysis

Excellent agreement between the two runs

(several systematic corrections rather different between the two runs)

Period	Asymmetry (ppb)	Stat. Unc. (ppb)	Syst. Unc. (ppb)	Tot. Uncertainty (ppb)
Run 1	-223.5	15.0	10.1	18.0
Run 2	-227.2	8.3	5.6	10.0
Run 1 and 2 combined				
with correlations	-226.5	7.3	5.8	9.3

5/10/2019

Un-Blinded Analysis

Excellent agreemer Mark L. Pitt (several systematic @marklpitt wo runs) Unblinding day for Qweak is here! Finally after 17 years! -190 Physics Asymmetry (ppb) -210 -230 -250 -270 4:38 PM - 31 Mar 2017 -290 🔛 🏟 🔶 😿 2 Retweets 8 Likes -0.5 3.5 ılı \bigcirc 1ি 2 0 8 Tweet your reply

It didn't happen if you don't tweet about it!

Running of the Weak Mixing Angle sin²θ_W Q_{weak} completes the low Q² "weak charge triad" by adding a precision measurement of the proton's weak charge.

Note: interference effects of heavy new physics (ie. Z', leptoquarks) is suppressed at Z resonance so LEP/SLC mass limits ~<TeV, while low energy observables probe few TeV scale

Weak Chargeniton Semi-Leptonic PV Physics Beyond the SM

Future: MOLLER Experiment at 11 GeV JLab

An ultra-precise measurement of the weak mixing angle using Møller scattering

Physics Potential of Precision Electron Weak Charge Measurement from MOLLER

The MOLLER experiment provides:

• Excellent sensitivity to Beyond Standard Model (BSM) physics

High precision measurement $\delta(Q_W^e)/Q_W^e \sim \pm 2.4\%$ of suppressed SM observable $Q_W^e = -(1 - 4\sin^2\theta_W) \sim -.046$

 \longrightarrow sensitive to new neutral current amplitudes as weak as ~ 10⁻³ G_F

Most sensitive probe of new flavor and CP-conserving neutral current interactions over next decade

- new TeV scale dynamics (Z', supersymmetry, doubly charged scalars,...)
- weakly coupled MeV GeV scale mediators (dark photons, ...)

 High precision benchmark point within the Standard Model
$\delta(\sin^2 \theta_W) \sim \pm 0.00024 (\text{stat.}) \pm 0.00013 (\text{syst.})$
~ 0.1% precision, comparable to sensitivity of
best collider determinations

Other measurements on same timescale	δ(sin²θ _w)
Mainz MESA P2	~ ±0.00034
Final Tevatron	~ ±0.00041
LHC 14 TeV, 300 fb ⁻¹	~ ±0.00036

MOLLER Complementarity to LHC

- If LHC sees ANY anomaly in Runs 2 or 3 (~2022)
 - The unique discovery space provided by MOLLER will become a pressing need, like other sensitive probes (eg. g-2 anomaly)
- If LHC observes no anomaly in next decade, MOLLER sensitive to discovery scenarios beyond LHC signatures
 - Hidden weak scale scenarios (eg. compressed supersymmetry)
 - Lepton number violating amplitudes
 - Light dark matter mediators

— …

Most sensitive discovery reach over the next decade for CP-/ flavor- conserving or lepton number violating scattering amplitudes

5/10/2019

Virginia Tech Contributions and Personnel

- VT contributions: luminosity monitors, drift chambers, halo monitors, simulations, analysis
- Undergraduates: Kevin Finelli, Jim Dowd, Elizabeth Bonnell, Jackson Walters, John Echols, Jon Hoffman, Jonathan Baker, Bevin Huang, Kyle Stewart, Alex Nikrant, Alejandro Sosa, Carlos Segovia-Bustamante, Danny Vowell, Cheyenne Neff, Chris Wollbrink
- Graduates: Juliette Mammei, John Leacock, Wade Duvall, Anna Lee
- Postdoc: Riad Suleiman
- Senior staff: Norman Morgan
 5/10/2019

Summary

- Parity-violating electron scattering provides stringent low energy tests of the Standard Model
- **Qweak Experiment:** Parity-violating elastic e-p scattering
 - Final result: Nature 557, 207 211 (2018)
 - precision determination of proton's weak charge
 - Q_W^p (PVES) = 0.0719 ± 0.0045 Q_W^p (SM) = 0.0708 ± 0.0003
 - Constrains generic new parity-violating "Beyond the Standard Model Physics" at TeV scale: ruled out at Λ/g < 3.5 TeV at 95% CL
- MOLLER Experiment: Parity-violating elastic e-e scattering
 - new initiative being developed for Jlab
 - anticipated 0.1% precision on weak mixing angle
 - sensitive down to 10^{-3} G_F; mass scales to $\Lambda/g \sim 7.5$ TeV
 - best discovery reach for flavor and CP conserving process over next decade