A v Leaf: How to Search for Majorana Dynamics at Low-Energy Accelerators

Susan Gardner
Department of Physics and Astronomy University of Kentucky Lexington, KY

Based on work in collaboration with Xinshuai Yan (U. Kentucky)

CNP Research Day
Virginia Tech
May 10, 2019

Fundamental Majorana Dynamics

Can exist for electrically neutral massive fermions: either leptons (v's) or combinations of quarks (n's)
Lorentz invariance allows

$$
\mathcal{L}=\bar{\psi} i \not \partial \psi-\frac{1}{2} m\left(\psi^{T} C \psi+\bar{\psi} C \bar{\psi}^{T}\right)
$$

[Majorana, 1937]
where m is the Majorana mass.
N.B. a "Majorana neutron" is an entangled n and $\overline{\mathrm{n}}$ state

Bibliography:
S.G. \& Xinshuai Yan (U. Kentucky), Phys. Rev. D93, 096008 (2016) [arXiv:1602.00693];
S.G. \& Xinshuai Yan, Phys. Rev. D97, 056008 (2018) [arXiv:1710.09292];
S.G. \& Xinshuai Yan, Phys. Lett. B790 (2019) 421 [arXiv:1808.05288];
and on ongoing work in collaboration with Xinshuai Yan

Why Search for n-n Oscillations?

The Standard Model (SM) cannot explain the origin of the cosmic BAU, dark matter, or dark energy. B violation plays a role in at least one of these puzzles. Although B violation appears in the SM (sphalerons), [Kuzmin, Rubakov, \& Shaposhnikov, 1985]
we know nothing of its pattern at accessible energies.
Do processes occur with $|\Delta B|=\mid$ or $|\Delta B|=2$ or both? The SM conserves B-L, but does Nature?
Despite severe limits on $|\Delta B|=1$ processes, the origin of $|\Delta B|=2$ processes can be completely distinct
[Marshak and Mohapatra, 1980; Babu \& Mohapatra, 2001 \& 2012; Arnold, Fornal, \& Wise, 2013]
If neutron-antineutron oscillations, e.g., are observed, then $B-L$ is broken, and we have found physics BSM!

On Neutrinoless Double Beta $(0 \vee \beta \beta)$ decay

If observed, the v has a Majorana mass

[Schechter \& Valle, 1982]
Ov $\beta \beta$ mediated by a dimension 9 operator:
$\mathcal{O} \propto \bar{u} \bar{u} d d \bar{e} \bar{e} \quad\left(\right.$ or $\left.\pi^{-} \pi^{-} \rightarrow \mathrm{e}^{-} \mathrm{e}^{-}\right)$
"mass mechanism"

"long range"

"short range"
[Bonnet, Hirsch, Ota, \& Winter, 2013]

$0 v \beta \beta$ Decay in Nuclei

Can be mediated by "short-" or "long"-range mechanisms
The "short-range" mechanism involves new B-L violating dynamics; e.g.,

[Bonnet, Hirsch, Ota, \& Winter, 2013]
Can we relate the possibilities in a data-driven way?
[S.G. \& Xinshuai Yan, 2019]

Cf. connection via $|\Delta \mathrm{B}|=1$ process
[Babu \& Mohapatra, 2015]

Nucleon-Antinucleon Transitions Can be realized in different ways

Enter searches for

- neutron-antineutron oscillations (free n's \& in nuclei)
"spontaneous"
\& thus sensitive to

$$
\mathcal{M}=\left(\begin{array}{cc}
M_{n}-\mu_{n} B & \delta \\
\delta & M_{n}+\mu_{n} B
\end{array}\right)
$$

environment

$$
P_{n \rightarrow \bar{n}}(t) \simeq \frac{\delta^{2}}{2\left(\mu_{n} B\right)^{2}}\left[1-\cos \left(2 \mu_{n} B t\right)\right]
$$

- dinucleon decay (in nuclei)
(limited by finite nuclear density)
- nucleon-antinucleon conversion (NEW!) (mediated by external interactions) [SG \& Xinshuai Yan]

Effective Lagrangian

 Neutron interactions with B-L violation \& electromagnetism$$
\mathcal{L}_{\text {eff }} \supset-\frac{1}{2} \mu_{n} \bar{n} \sigma^{\mu \nu} n F_{\mu \nu}-\frac{\delta}{2} n^{T} C n-\frac{\eta}{2} n^{T} C \gamma^{\mu} \gamma^{5} n j_{\mu}+\text { h.c. }
$$

$$
n \rightarrow \bar{n}
$$

"spontaneous" \longrightarrow oscillation
[SG \& Xinshuai Yan, arXiv: 1710.09292]
Since the quarks carry electric charge, a BSM model that generates neutronantineutron oscillations can also generate conversion

Neutron-Antineutron Conversion

Different mechanisms are possible

* $n-\bar{n}$ conversion and oscillation could share the same "TeV" scale BSM sources
\Longrightarrow Then the quark-level conversion operators can be derived noting the quarks carry electric charge
* $\mathrm{n}-\overline{\mathrm{n}}$ conversion and oscillation could come from different BSM sources
\Longrightarrow Indeed different $|\Delta B|=2$ processes could appear (e.g., $e^{-} p \rightarrow e^{+} \bar{p}$)
$\mathrm{N} \overline{\mathrm{N}}$ conversion

Neutron-Antineutron Oscillation

[Rao \& Shrock, 1982]

Quark-level operators

$\left(\mathcal{O}_{1}\right)_{\chi_{1} \chi_{2} \chi_{3}}=\left[u_{\chi_{1}}^{T \alpha} C u_{\chi_{1}}^{\beta}\right]\left[d_{\chi_{2}}^{T \gamma} C d_{\chi_{2}}^{\delta}\right]\left[d_{\chi_{3}}^{T \rho} C d_{\chi_{3}}^{\sigma}\right]\left(T_{s}\right)_{\alpha \beta \gamma \delta \rho \sigma}$,
$\left(\mathcal{O}_{2}\right)_{\chi_{1} \chi_{2} \chi_{3}}=\left[u_{\chi_{1}}^{T \alpha} C d_{\chi_{1}}^{\beta}\right]\left[u_{\chi_{2}}^{T \gamma} C d_{\chi_{2}}^{\delta}\right]\left[d_{\chi_{3}}^{T \rho} C d_{\chi_{3}}^{\sigma}\right]\left(T_{s}\right)_{\alpha \beta \gamma \delta \rho \sigma}$,
$\left(T_{s}\right)_{\alpha \beta \gamma \delta \rho \sigma}=\epsilon_{\rho \alpha \gamma} \epsilon_{\sigma \beta \delta}+\epsilon_{\sigma \alpha \gamma} \epsilon_{\rho \beta \delta}+\epsilon_{\rho \beta \gamma} \epsilon_{\sigma \alpha \delta}+\epsilon_{\sigma \beta \gamma} \epsilon_{\rho \alpha \delta}$,

$$
\left.\begin{array}{rl}
\left(T_{a}\right)_{\alpha \beta \gamma \delta \rho \sigma}=\epsilon_{\rho \alpha \beta} \epsilon_{\sigma \gamma \delta}+\epsilon_{\sigma \alpha \beta} \epsilon_{\rho \gamma \delta} & \mathrm{O}_{2}
\end{array}\right) \mathrm{O}_{3}
$$

Only 14 of 24 operators are independent

$$
\begin{aligned}
& \left(\mathcal{O}_{1}\right)_{\chi_{1} L R}=\left(\mathcal{O}_{1}\right)_{\chi_{1} R L}, \quad\left(\mathcal{O}_{2,3}\right)_{L R \chi_{3}}=\left(\mathcal{O}_{2,3}\right)_{R L \chi_{3}}, \\
& \left(\mathcal{O}_{2}\right)_{m m n}-\left(\mathcal{O}_{1}\right)_{m m n}=3\left(\mathcal{O}_{3}\right)_{m m n} \quad[\text { Caswell, Milutinovic, \& Senjanovic, } 1983]
\end{aligned}
$$

Only 4 appear in SM effective theory

From Oscillation to Conversion

Quark-level operators: compute $q^{\rho}(p)+\gamma(k) \rightarrow \bar{q}^{\bar{\delta}}\left(p^{\prime}\right)$

$$
\begin{aligned}
& \mathcal{H}_{I} \supset \frac{\delta_{q}}{2} \sum_{\chi_{1}}\left(\psi_{\chi_{1}}^{\rho T} C \psi_{\chi_{1}}^{\delta}+\bar{\psi}_{x_{1}}^{\delta} C \bar{\psi}_{\chi_{1}}^{\rho T}\right)+Q_{\rho} e \sum_{\chi_{2}} \bar{\psi}_{\chi_{2}}^{\rho} A \psi_{\chi_{2}}^{\rho} \\
&+Q_{\delta} e \sum_{\chi_{3}} \bar{\psi}_{x_{3}}^{\delta} A \psi_{x_{3}}^{\delta},
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\bar{q}^{\delta}\left(p^{\prime}\right)\right| \mathcal{T}\left(\sum_{x_{1} \chi_{2}}\left(-i \frac{\delta_{q}}{2} \int d^{4} x \psi_{x_{1}}^{\rho T} C \psi_{x_{1}}^{\delta}\right)\right. \\
& \left.\times\left(-i Q_{\rho} e \int d^{4} y \bar{\psi}_{\chi_{2}}^{\rho} A \psi_{x_{2}}^{\rho}-i Q_{\delta} e \int d^{4} y \bar{\psi}_{\chi_{2}}^{\delta} A \psi_{x_{2}}^{\delta}\right)\right) \\
& \times\left|q^{\rho}(p) \gamma(k)\right\rangle,
\end{aligned}
$$

C $\gamma_{\mu} \gamma_{5}$ only

$$
-\frac{m \delta_{q} e}{p^{2}-m^{2}}\left(Q_{\rho} \psi_{-\chi_{2}}^{\delta T} C \gamma^{\mu} \psi_{\chi_{2}}^{\rho}-Q_{\delta} \psi_{\chi_{2}}^{\delta T} C \gamma^{\mu} \psi_{-\chi_{2}}^{\rho}\right)
$$

B-L Violation via e-n scattering

 Linking neutron-antineutron oscillation to conversion
e.g.:

$\left(\mathcal{O}_{2}\right)_{\chi_{1} \chi_{2} \chi_{3}}=\left[u_{\chi_{1}}^{T \alpha} C d_{\chi_{1}}^{\beta}\right]\left[u_{\chi_{2}}^{T \gamma} C d_{\chi_{2}}^{\delta}\right]\left[d_{\chi_{3}}^{T \rho} C d_{\chi_{3}}^{\sigma}\right]\left(T_{s}\right)_{\alpha \beta \gamma \delta \rho \sigma}$ [Rao \& Shrock, 1982]

$$
\left(\tilde{\mathcal{O}}_{2}\right)_{\chi_{1} \chi_{2} \chi_{3}}^{\chi \mu}=\left[\left[u_{-\chi}^{\alpha T} C \gamma^{\mu} \gamma_{5} d_{\chi}^{\beta}-2 u_{\chi}^{\alpha T} C \gamma^{\mu} \gamma_{5} d_{-\chi}^{\beta}\right]\left[u_{\chi_{2}}^{\gamma T} C d_{\chi_{2}}^{\delta}\right]\left[d_{\chi_{3}}^{\rho T} C d_{\chi_{3}}^{\sigma}\right]\right.
$$

$$
\begin{aligned}
& +\left[u_{\chi_{1}}^{\alpha T} C d_{\chi_{1}}^{\beta}\right]\left[u_{-\chi}^{\gamma T} C \gamma^{\mu} \gamma_{5} d_{\chi}^{\delta}-2 u_{\chi}^{\gamma T} C \gamma^{\mu} \gamma_{5} d_{-\chi}^{\delta}\right]\left[d_{\chi_{3}}^{\rho T} C d_{\chi_{3}}^{\sigma}\right] \\
& \left.+\left[u_{\chi_{1}}^{\alpha T} C d_{\chi_{1}}^{\beta}\right]\left[u_{\chi_{2}}^{\gamma T} C d_{\chi_{2}}^{\delta}\right]\left[d_{-\chi}^{\rho T} C \gamma^{\mu} \gamma_{5} d_{\chi}^{\sigma}+d_{\chi}^{\rho T} C \gamma^{\mu} \gamma_{5} d_{-\chi}^{\sigma}\right]\right] \mathbf{T}_{\text {s.. }}
\end{aligned}
$$

B-L Violation via e-n scattering

Linking neutron-antineutron oscillation to conversion Moreover...

$$
\begin{array}{rr}
\left(\tilde{\mathcal{O}}_{1}\right)_{\chi_{1} \chi_{2} \chi_{3}}^{\chi \mu} & {\left[-2\left[u_{-\chi}^{\alpha T} C \gamma^{\mu} \gamma_{5} u_{\chi}^{\beta}+u_{\chi}^{\alpha T} C \gamma^{\mu} \gamma_{5} u_{-\chi}^{\beta}\right]\left[d_{\chi_{2}}^{\gamma T} C d_{\chi_{2}}^{\delta}\right]\left[d_{\chi_{3}}^{\rho T} C d_{\chi_{3}}^{\sigma}\right]\right.} \\
+ & {\left[u_{\chi_{1}}^{\alpha T} C u_{\chi_{1}}^{\beta}\right]\left[d_{-\chi}^{\gamma T} C \gamma^{\mu} \gamma_{5} d_{\chi}^{\delta}+d_{\chi}^{\gamma T} C \gamma^{\mu} \gamma_{5} d_{-\chi}^{\delta}\right]\left[d_{\chi_{3}}^{\rho T} C d_{\chi_{3}}^{\sigma}\right]} \\
+ & \left.\left[u_{\chi_{1}}^{\alpha T} C u_{\chi_{1}}^{\beta}\right]\left[d_{\chi_{2}}^{\gamma T} C d_{\chi_{2}}^{\delta}\right]\left[d_{-\chi}^{\rho T} C \gamma^{\mu} \gamma_{5} d_{\chi}^{\sigma}+d_{\chi}^{\rho T} C \gamma^{\mu} \gamma_{5} d_{-\chi}^{\sigma}\right]\right]\left(T_{s}\right)_{\alpha \beta \gamma \delta \rho \sigma}
\end{array}
$$

yielding [Here $\mathrm{X}=\mathrm{R}-\mathrm{X}=\mathrm{L}$ for em scattering]

$$
\left(\tilde{\mathcal{O}}_{1}\right)_{\chi_{1} \chi_{2} \chi_{3}}^{\chi}=\left(\delta_{1}\right)_{\chi_{1} \chi_{2} \chi_{3}} \frac{e m}{3\left(p_{\text {eff }}^{2}-m^{2}\right)} \frac{Q e j_{\mu}}{q^{2}}\left(\tilde{\mathcal{O}}_{1}\right)_{\chi_{1} \chi_{2} \chi_{3}}^{\chi \mu},
$$

(best connection to oscillation as $q^{2} \rightarrow 0$)
with similar relationships for $\mathrm{i}=2,3$ [only these in em case] The hadronic matrix elements are computed in the MIT bag model.

B-L Violation via e-n scattering Linking neutron-antineutron oscillation to conversion

 [SG \& Xinshuai Yan, arXiv:I7I0.09292, PRD 20I8]TABLE I. Dimensionless matrix elements $\left(I_{i}\right)_{11}^{\chi 3} \chi_{2} \chi_{3}$ of $n-\bar{n}$ conversion operators. The column "EM" denotes the matrixelement combination of $(\chi=\mathrm{R})-(\chi=\mathrm{L})$.

I_{1}			I_{2}					I_{3}			
$\chi_{1} \chi_{2} \chi_{3}$	$\chi=R$	$=L$		$\chi_{2} \chi_{3}$	$\chi=R$	$\chi=L$		$\chi_{1} \chi_{2} \chi_{3}$		$\chi=L$	EM
RRR	19.8	19.8	0	RRR	-4.95	-4.95	0	RRR	1.80	-8.28	10.1
RRL	17.3	17.3	0	RRL	-2.00	-9.02	7.02	RRL	-1.07	-8.81	7.74
RLR	17.3	17.3	0	RLR	-4.09	-0.586	-3.50	RLR	7.20	6.03	1.17
RLL	6.02	6.02	0	RLL	-0.586	-4.09	3.50	RLL	6.03	7.20	-1.17
LRR	6.02	6.02	0	LRR	-4.09	-0.586	-3.50	LRR	7.20	6.03	1.17
LRL	17.3	17.3	0	LRL	-0.586	-4.09	3.50	LRL	6.03	7.20	-1.17
LLR	17.3	17.3	0	LLR	-9.02	-2.00	-7.02	LLR	-8.81	-1.07	-7.74
LLL	19.8	19.8	0	LLL	-4.95	-4.95	0	LLL	-8.28	1.80	-10.1

Electromagnetic scattering yields $n-\bar{n}$ conversion from O_{2} and O_{3} operators only! Interactions impact view on $n-\bar{n}$ osc. even in $q^{2} \rightarrow 0$ limit; (cf. Ks regeneration in matter); cf. Nesvizhevsky et al 2018....

Neutron-Antineutron Conversion

Different mechanisms are possible

* $\mathrm{n}-\overline{\mathrm{n}}$ conversion and oscillation could share the same "TeV" scale BSM sources
\Longrightarrow Then the quark-level conversion operators can be derived noting the quarks carry electric charge
* $\mathrm{n}-\overline{\mathrm{n}}$ conversion and oscillation could come from different BSM sources
\Longrightarrow Here we consider nucleon-antinucleon conversion

Now we turn to minimal scalar models.

Models with $|\Delta \mathrm{B}|=2$ Processes

 Enter minimal scalar models without proton decay[Arnold, Fornal, and Wise, 2013; Dev \& Mohapatra, 2015]
Already used for $n \rightarrow \bar{n}$ oscillation without P decay [Arnold, Fornal, Wise, PRD, 2013]

$$
\begin{aligned}
& \text { Note limits on }|\Delta \mathrm{B}|=\mathrm{I} \text { processes are severe! } \\
& \text { E.g., } \mathrm{T}\left(\mathrm{~N} \rightarrow \mathrm{e}^{+} \mathrm{T}\right)=8.2 \times 10^{33} \mathrm{yr}[\mathrm{p}] @ 90 \% \mathrm{CL}
\end{aligned}
$$

Add new scalars X_{i} that do not give N decay at tree level
Also choose X_{i} that respect SM gauge symmetry and also under interactions $X_{i} X_{j} X_{k}$ or $X_{i} X_{j} X_{k} X_{l}$ — cf."hidden sector" searches: possible masses are limited by experiment

Scalars without Proton Decay That also carry B or L charge

TABLE I. Scalar particle representations in the $\mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}} \mathrm{SM}$ that carry nonzero B and/or L but permit no proton decay at tree level, after Ref. [4]. We indicate the possible interactions between the scalar X and SM fermions schematically. Note that the indices a, b run over three generations, that the symmetry of the associated coupling $g_{i}^{a b}$ under $a \leftrightarrow b$ exchange is noted in brackets, and finally that our convention for Y is $Q_{\mathrm{em}}=T_{3}+Y$. Please refer to the text for further discussion.

Note
SU(3) rep'ns

Scalar	SM Representation	B	L	Operator(s)	$\left[g_{i}^{a b} ?\right]$
X_{1}	$(1,1,2)$	0	-2	$X e^{a} e^{b}$	$[\mathrm{~S}]$
X_{2}	$(1,1,1)$	0	-2	$X L^{a} L^{b}$	$[\mathrm{~A}]$
X_{3}	$(1,3,1)$	0	-2	$X L^{a} L^{b}$	$[\mathrm{~S}]$
X_{4}	$(\overline{6}, 3,-1 / 3)$	$-2 / 3$	0	$X Q^{a} Q^{b}$	$[\mathrm{~S}]$
X_{5}	$(\overline{6}, 1,-1 / 3)$	$-2 / 3$	0	$X Q^{a} Q^{b}, X u^{a} d^{b}$	$[\mathrm{~A},-]$
X_{6}	$(3,1,2 / 3)$	$-2 / 3$	0	$X d^{a} a^{b}$	$[\mathrm{~A}]$
X_{7}	$(\overline{6}, 1,2 / 3)$	$-2 / 3$	0	$X d^{a} d^{b}$	$[\mathrm{~S}]$
X_{8}	$(\overline{6}, 1,-4 / 3)$	$-2 / 3$	0	$X u^{a} u^{b}$	$[\mathrm{~S}]$
X_{9}	$(3,2,7 / 6)$	$1 / 3$	-1	$X \bar{Q}^{a} e^{b}, X L^{a} \bar{u}^{b}$	$[-,-]$
Scalar-fermionn couplings					

Patterns of $|\Delta \mathrm{B}|=2$ Violation? Note possible SM gauge invariant scalar models

[SG \& Xinshuai Yan, arXiv: 1808.05288]
TABLE II. Minimal interactions that break B and/or L from scalars X_{i} that do not permit $|\Delta \mathrm{B}|=1$ interactions at tree level, indicated schematically, with the Hermitian conjugate implied. Interactions labelled M1-M9 appear in models 1-9 of Ref. [4]. Interactions A-G possess $|\Delta L|=2,|\Delta B|=0$. M19, M20, and M21 follow from M8, M17, and M18 under $X_{7} \rightarrow X_{6}$, respectively, but they do not involve firstgeneration fermions only.

Patterns of $|\Delta \mathrm{B}|=2$ Violation? Note possible BNV processes

[SG \& Xinshuai Yan, arXiv: I8o8.05288]
TABLE III. Suite of $|\Delta B|=2$ and $|\Delta L|=2$ processes generated by the models of Table II, focusing on states with first-generation matter. The ($*$) superscript indicates that a weak isospin triplet of $|\Delta \mathrm{L}|=2$ processes can appear, namely $\pi^{0} \pi^{0} \rightarrow \nu \nu$ and $\pi^{-} \pi^{0} \rightarrow e^{-} \nu$. Models M7, M11, M14, and M16 also support $\nu n \rightarrow \bar{n} \bar{\nu}$, revealing that cosmic ray neutrinos could potentially mediate a $|\Delta \mathrm{B}|=2$ effect.

$n \bar{n}$	$\pi^{-} \pi^{-} \rightarrow e^{-} e^{-}$	$e^{-} p \rightarrow \bar{\nu}_{\mu, \tau} \bar{n}$	$e^{-} p \rightarrow \bar{\nu}_{e} \bar{n} / e^{+} \bar{p}$	$e^{-} p \rightarrow e^{+} \bar{p}$
M1	A	M5	M7	M10
M2	$\mathrm{B}^{(*)}$	M6	M11	M12
M3	$\mathrm{C}^{(*)}$	M13	M14	M15
			M16	

Use observations of $n \bar{n}$ oscillation or $N \bar{N}$ conversion $\left(e^{-} p \rightarrow e^{+} \bar{p}, \ldots\right)$ to establish new scalars...
\& $w /$ both can predict the existence of $\pi^{-} \pi^{-} \rightarrow e^{-} e^{-1}$.

Connecting $|\Delta \mathrm{B}|=2$ to $|\Delta \mathrm{L}|=2 \ldots$

"M3"

$n-\bar{n}$

$$
e^{-} p \rightarrow e^{+} \bar{p}
$$ An example...

Connecting $|\Delta \mathrm{B}|=2$ to $|\Delta \mathrm{L}|=2 \ldots$

"Everything not forbidden is compulsory" [M. Gell-Mann, after T.H. White]

Patterns of $|\Delta \mathrm{B}|=2$ Violation Discovery implications for $0 v \beta \beta$ decay

TABLE IV. Possible patterns of $|\Delta B|=2$ discovery and their interpretation in minimal scalar-fermion models. Note that only $n-\bar{n}$ oscillations and $e^{-} n \rightarrow e^{-} \bar{n}$ break B-L symmetry and that the pertinent conversion processes can be probed through electron-deuteron scattering. The latter are distinguished by the electric charge of the final-state lepton accompanying nucleon-antinucleon annihilation. Note that the $0 \nu \beta \beta$ query refers specifically to the existence of $\pi^{-} \pi^{-} \rightarrow e^{-} e^{-}$from new, short-distance physics. Note that we can possibly establish model D and $|\Delta \mathrm{L}|=2$ violation, but that model does not give rise to $\pi^{-} \pi^{-} \rightarrow e^{-} e^{-}$. In contrast we cannot establish X_{8} alone and thus cannot establish model C.

Model $n \bar{n} ?$	$e^{-} n \rightarrow e^{-} \bar{n} ?$	$e^{-} p \rightarrow \bar{\nu}_{X} \bar{n} ?$	$e^{-} p \rightarrow e^{+} \bar{p} ?$	$0 \nu \beta \beta ?$	
M3	Y	N	N	Y	$\mathrm{Y}[\mathrm{A}]$
M 2	Y	Y	Y	Y	$\mathrm{Y}[\mathrm{B}]$
M 1	Y	Y	Y	N	$?[\mathrm{D}]$
-	N	N	Y	Y	$?[\mathrm{C}]$

Note high-intensity, low-energy e-scattering facilities (P2, e.g.) can be used to broader purpose

Phenomenology of New Scalars

 constraints from many sources - Focus on first generationi) $\mathrm{n}-\overline{\mathrm{n}}$ (But this does not impact M7)
ii) Collider constraints

CMS: I+l+ search; cannot look at invariant masses below 8 GeV [CMS 2012, 2014, 2016]
iii) $(g-2)_{\mathrm{e}}$ [Babu \& Macesanu, 2003] Use latest exp't! [Hanneke, Fogwell, Gabrielse, 2008] Limit: $\mathrm{M}_{1} / \mathrm{g}_{1}{ }^{11} \geq 80 \mathrm{GeV}$
iii) Nuclear stability SuperK: $\mathrm{pp} \rightarrow \mathrm{e}+\mathrm{e}^{+}$ [Bramante, Kumar, \& Learned, 2015]
But note short-distance repulsion! iv) $\mathrm{H} \overline{\mathrm{H}}$ annihilation

(a)
(b)

Few GeV mass window possible

Low-Energy Electron Facilities Illustrative parameter choices have been made

[Hydrogen]

Facility	Beam		Target		Luminosity$\left(\mathrm{cm}^{-2}\right)$
	Energy (MeV)	Current (mA)	Length (cm)	Density ($\mathrm{g} / \mathrm{cm}^{3}$)	
CBETA [14]	150	40	60	0.55×10^{-6}	2.48×10^{36}
MESA [15]	100	10	60	0.55×10^{-6}	6.21×10^{35}
ARIEL [16]	50	10	$\begin{array}{r} 100 \\ * \quad 0.2 \end{array}$	$\begin{aligned} & 0.09 \times 10^{-3} \\ & 71.3 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 1.69 \times 10^{38} \\ & 2.68 \times 10^{38} \end{aligned}$
FAST [17]	150	28.8	$\begin{array}{r} 100 \\ * \quad 0.1 \end{array}$	$\begin{aligned} & 0.09 \times 10^{-3} \\ & 71.3 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 4.88 \times 10^{38} \\ & 3.87 \times 10^{38} \end{aligned}$

$\nabla=$ ERL (internal target)
*Liquid
= ERL (e.g.)
= Linac (external target)
= Linac, ILC test accelerator

Event Rates

Select particular scalar masses/couplings for reference

Rates in \#/yr $\quad M_{1,3}=3.5 \mathrm{GeV}$, else 2.5 GeV
$e^{-} p \rightarrow e^{+} p:$

Facility	M7	M10	M11	M12	M14	M15	M16
CBETA [14]	0.076	0.010	0.001	0.001	0	0.053	0.006
MESA [15]	0.010	0.001	0.0	0.0	0	0.007	0.001
ARIEL [16]	0.800	0.107	0.014	0.007	0	0.558	0.065
	1.268	0.170	0.022	0.011	0	0.884	0.104
FAST [17]	14.908	1.998	0.259	0.124	0	10.398	1.217
	11.810	1.583	0.205	0.098	0	8.238	0.964

$e^{-} p \rightarrow V_{e} \bar{n}$
N.B. conversion processes (also pertinent to $0 \vee \beta \beta$) are discoverable

Facility	M7	M11	M14	M16
CBETA [14]	0.087	0.007	0	0.006
MESA [15]	0.011	0.001	0	0.001
ARIEL [16]	0.801	0.060	0	0.056
	1.270	0.096	0	0.088
FAST [17]	17.045	1.285	0	1.181
	13.503	1.018	0	0.935

Summary

- The discovery of B-L violation would reveal the existence of dynamics beyond the Standard Model
- The energy scale of B-L violation speaks to different explanations as to why the neutrino is light - a "short range" mechanism could also generate B-L violation in the quark sector
- We have noted neutron-antineutron (\& nucleon-antinucleon conversion!) conversion, i.e., neutron-antineutron transitions as mediated by an external current (as via scattering)
- We have used minimal scalar models to relate $|\Delta \mathrm{B}|=2$ to $|\Delta \mathrm{L}|=2$ processes
- Experiments with intense low-energy electron beams, e.g., complement essential neutron studies to help solve the v mass puzzle

Backup Slides

B-L Violation via e-d scattering What sorts of limits could be set?

Matching relation:

$$
\eta \bar{v}\left(\mathbf{p}^{\prime}, s^{\prime}\right) C j \gamma_{5} u(\mathbf{p}, s)=\frac{e m}{3\left(p_{\text {eff }}^{2}-m^{2}\right)} \frac{e j_{\mu}}{q^{2}}
$$

$\times\left\langle\bar{n}_{\mathrm{q}}\left(\mathbf{p}^{\prime}, \mathbf{s}^{\prime}\right)\right| \int \mathbf{d}^{\mathbf{3}} \mathbf{x}_{\mathbf{i}, \chi_{1}, \chi_{2}, \chi_{3}}{ }^{\prime}\left(\delta_{\mathbf{i}}\right)_{\chi_{1}, \chi_{2}, \chi_{3}}\left[\left(\tilde{\mathcal{O}}_{\mathbf{i}}\right)_{\chi_{1}, \chi_{2}, \chi_{3}}^{\mathrm{R} \mu}-\left(\tilde{\mathcal{O}}_{\mathbf{i}}\right)_{\chi_{1}, \chi_{2}, \chi_{3}}^{\mathrm{L} \mu}\right]\left|\mathbf{n}_{\mathrm{q}}(\mathbf{p}, \mathbf{s})\right\rangle$
The best limits come from small-angle scattering

- using the uncertainty principle to estimate $\theta_{\text {min }}$

Sensitivity estimate for a beam energy of 20 MeV :

$$
|\tilde{\delta}| \lesssim 2 \times 10^{-15} \sqrt{\frac{N \text { events }}{1 \text { event }}} \sqrt{\frac{1 \mathrm{yr}}{\mathrm{t}}} \sqrt{\frac{0.6 \times 10^{17} \mathrm{~s}^{-1}}{\phi}} \sqrt{\frac{1 \mathrm{~m}}{L}} \sqrt{\frac{5.1 \times 10^{22} \mathrm{~cm}^{-3}}{\rho}} \mathrm{GeV} .
$$

for the Majorana mass of the neutron

B-L Violation via n-d scattering

 What sorts of limits could be set?For cold neutrons (as at the ILL)

$$
\left|\boldsymbol{p}_{n}\right|=1.94 \mathrm{keV}
$$

Sensitivity estimate (set by n -e scattering):
$|\tilde{\delta}| \lesssim 3 \times 10^{-19} \sqrt{\frac{N \text { events }}{1 \text { event }}} \sqrt{\frac{1 \text { yr }}{\mathrm{t}}} \sqrt{\frac{1.7 \times 10^{11} \mathrm{~s}^{-1}}{\phi}} \sqrt{\frac{1 \mathrm{~m}}{L}} \sqrt{\frac{5 \times 10^{22} \mathrm{~cm}^{-3}}{\rho}} \mathrm{GeV}$
for the Majorana mass of the neutron
The combination of e and n beam experiments should offer a powerful crosscheck

Cross Section Estimate

 Experimental limits can be translated to scalar-mass-coupling "sensitivity" plots
${ }^{\text {st }}$ gen.

$$
\mathrm{e}^{-} \mathrm{p} \rightarrow \mathrm{e}^{+} \overline{\mathrm{p}}
$$

$$
\sigma \sim 1.5 \times 10^{-4}\left|g_{4}^{11}\right|^{6}\left|\lambda_{7}\right|^{2}\left|g_{3}^{11}\right|^{2}\left(\frac{5 \mathrm{GeV}}{M_{X_{4}}}\right)^{12}\left(\frac{1 \mathrm{GeV}}{M_{X_{3}}}\right)^{4} \mathrm{ab}
$$

[SG \& Xinshuai Yan, arXiv: 1808.05288$]$
Visible with "DarkLight" (FEL JLab) parameters
[Babu \& Macesanu, 2003; Hanneke, Fogwell, Gabrielse, 2008]
N.B. survives direct limits: (g-2)e;
observed H -atom stability
Constraints from muonium-antimuonium osc.; $|\Delta F|=2$ mixing removed by generation-dependent couplings

